Answer:
The probability of a selection of 50 pages will contain no errors is 0.368
The probability that the selection of the random pages will contain at least two errors is 0.2644
Step-by-step explanation:
From the information given:
Let q represent the no of typographical errors.
Suppose that there are exactly 10 such errors randomly located on a textbook of 500 pages. Let
be the random variable that follows a Poisson distribution, then mean 
and the mean that the random selection of 50 pages will contain no error is 
∴

Pr(q =0) = 0.368
The probability of a selection of 50 pages will contain no errors is 0.368
The probability that 50 randomly page contains at least 2 errors is computed as follows:
P(X ≥ 2) = 1 - P( X < 2)
P(X ≥ 2) = 1 - [ P(X = 0) + P (X =1 )] since it is less than 2
![P(X \geq 2) = 1 - [ \dfrac{e^{-1} 1^0}{0!} +\dfrac{e^{-1} 1^1}{1!} ]](https://tex.z-dn.net/?f=P%28X%20%5Cgeq%202%29%20%3D%201%20-%20%5B%20%5Cdfrac%7Be%5E%7B-1%7D%201%5E0%7D%7B0%21%7D%20%2B%5Cdfrac%7Be%5E%7B-1%7D%201%5E1%7D%7B1%21%7D%20%5D)
![P(X \geq 2) = 1 - [0.3678 +0.3678]](https://tex.z-dn.net/?f=P%28X%20%5Cgeq%202%29%20%3D%201%20-%20%5B0.3678%20%2B0.3678%5D)

P(X ≥ 2) = 0.2644
The probability that the selection of the random pages will contain at least two errors is 0.2644
Answer:
0.25
Step-by-step explanation:
Answer:
x ≈ 15.0 ft
General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Trigonometry</u>
- tan∅ = opposite over adjacent
Step-by-step explanation:
<u>Step 1: Define</u>
Angle = 28°
Opposite leg of angle = 8 ft
Adjacent leg of angle = x ft
<u>Step 2: Find </u><em><u>x</u></em>
- Substitute: tan28° = 8/x
- Multiply <em>x </em>on both sides: xtan28° = 8
- Divide tan28° on both sides: x = 8/tan28°
- Evaluate: x = 15.0458
- Round: x ≈ 15.0 ft