3x+2y+2z=3
x+2y-+z=5
2x-4y+z=0
1 answer:
3x + 2y + 2z = 3 ⇒ 3x + 2y + 2z = 3
1x + 2y - 1z = 5 ⇒ <u>1x + 2y - 1z = 5</u>
2x - 4y + 1z = 0 4x + 4y + 1z = 8
4x + 4y + 1z = 8 ⇒ 12x + 12y + 3z = 24
3x + 2y + 2z = 3 3x - 2y = 5 ⇒ <u>12x - 8y = 20</u>
1x + 2y - 1z = 5 ⇒ 1x + 2y - 1z = 5 20y + 3z = 4
2x - 4y + 1z = 0 ⇒ <u>2x - 4y + 1z = 0</u> 20y - 20y + 3z = 4 - 20y
3x - 2y = 5 <u>3z</u> = <u>4 - 20y</u>
3 3
z = 1¹/₃ - 6²/₃y
20y + 3(1¹/₃ - 6²/₃y) = 4
20y + 4 - 20y = 4
20y - 20y + 4 = 4
0y + 4 = 4
<u> - 4 - 4</u>
<u>0y</u> = <u>0</u>
0 0
y = 0
20(0) + 3z = 4
0 + 3z = 4
<u>3z</u> = <u>4</u>
3 3
z = 1¹/₃
4x + 4(0) + 1¹/₃ = 8
4x + 0 + 1¹/₃ = 8
4x + 1¹/₃ = 8
<u> - 1¹/₃ - 1¹/₃
</u> <u>4x</u> = <u>6²/₃</u> 4 4<u>
</u> x = 1²/₃
You might be interested in
B.) 30 degrees would be correct here
All you have to do is find the relationships between the top and bottom and then find how they all r in common
Answer:37
Step-by-step explanation:
Answer:
I think the answer is going to be
x=9
decimal:
3.2
fraction:
3.2/1