Answer:
Step-by-step explanation:
We first have to write the equation for the sequence, then finding the first five terms will be easy. Follow the formatting:
and we are given enough info to fill in:
and
and
or in linear format:
where n is the position of the number in the sequence. We already know the first term is -35.
The second term:
so
and

The third term:
and
so
and we could go on like this forever, but the nice thing about this is when we know the difference all we have to do is add it to each number to get to the next number.
That means that the fourth term will be -27 + 4 which is -23.
The fifth term then will be -23 + 4 which is -19. You can check yourself by filling in a 5 for n in the equation and solving:
and
so

Let <span>Jacob, Carol, Geraldo, Meg, Earvin, Dora, Adam, and Sally be represented by the letters J, C, G, M, E, D, A, and S respectively. </span>
<span>In part IV we are asked:
</span><span>What is the sample space of the pairs of potential clients that could be chosen?
</span><span>
Since the Sample Space is the set of all possible outcomes, we need to make a set (a list) of all the possible pairs, which are as follows:
{(J, C), (J, G), (J, M), (J, E), (J, D), (J, A), (J, S)
, </span>(C, G), (C, M), (C, E), (C, D), (C, A), (C, S)
<span>
</span> , (G, M), (G, E), (G, D), (G, A), (G, S)
<span>
,</span>(M, E), (M, D), (M, A), (M, S)
<span>
, </span>(E, D), (E, A), (E, S) <span>
, </span>(D, A), (D, S)
, (A, S).}
We can check that the number of the elements of the sample space, n(S) is
1+2+3+4+5+6+7=28.
This gives us the answer to the first question: <span>How many pairs of potential clients can be randomly chosen from the pool of eight candidates?
(Answer: 28.)
II) </span><span>What is the probability of any particular pair being chosen?
</span>
The probability of a particular pair to be picked is 1/28, as there is only one way of choosing a particular pair, out of 28 possible pairs.
III) <span>What is the probability that the pair chosen is Jacob and Meg or Geraldo and Sally?
The probability of choosing (J, M) or (G, S) is 2 out of 28, that is 1/14.
Answers:
I) 28
II) 1/28</span>≈0.0357
III) 1/14≈0.0714
IV)
{(J, C), (J, G), (J, M), (J, E), (J, D), (J, A), (J, S)
, (C, G), (C, M), (C, E), (C, D), (C, A), (C, S)
, (G, M), (G, E), (G, D), (G, A), (G, S)
,(M, E), (M, D), (M, A), (M, S)
, (E, D), (E, A), (E, S)
, (D, A), (D, S)
, (A, S).}