Step-by-step explanation:

In this case we have:
Δx = 3/n
b − a = 3
a = 1
b = 4
So the integral is:
∫₁⁴ √x dx
To evaluate the integral, we write the radical as an exponent.
∫₁⁴ x^½ dx
= ⅔ x^³/₂ + C |₁⁴
= (⅔ 4^³/₂ + C) − (⅔ 1^³/₂ + C)
= ⅔ (8) + C − ⅔ − C
= 14/3
If ∫₁⁴ f(x) dx = e⁴ − e, then:
∫₁⁴ (2f(x) − 1) dx
= 2 ∫₁⁴ f(x) dx − ∫₁⁴ dx
= 2 (e⁴ − e) − (x + C) |₁⁴
= 2e⁴ − 2e − 3
∫ sec²(x/k) dx
k ∫ 1/k sec²(x/k) dx
k tan(x/k) + C
Evaluating between x=0 and x=π/2:
k tan(π/(2k)) + C − (k tan(0) + C)
k tan(π/(2k))
Setting this equal to k:
k tan(π/(2k)) = k
tan(π/(2k)) = 1
π/(2k) = π/4
1/(2k) = 1/4
2k = 4
k = 2
The answer would be 7.04^3
I need help Over the next two days, Benton Employment Agency is interviewing clients who
wish to find jobs. On the first day, the agency plans to interview clients in groups
of 6. On the second day, the agency will interview clients in groups of 8. If the
employment agency will interview the same number of clients on each day, what
is the smallest number of clients that could be interviewed each day?
Answer:
w=186-2t
Step-by-step explanation:
you can solve this too
just do w=186
X= -15/2
Reduce the fraction
Move terms
Collect like terms and calculate