300+10= 6×35 +10×10 explanation 6×35=210 and then 10×10=100 =210+100=310
The number of members that prefers geometry are 54members
Given the total number of people in the math club = 120 members
Let algebra + arithmetic + geometry = 100%
20 + 35 + geometry = 100
55 + geometry = 100
geometry = 100 - 55
geometry = 45%
This shows that the percentage of the member of the club that prefers geometry is 45%
Number of member that prefer geometry = 45% * 120
Number of members that prefer geometry 0.45 * 120
Number of members that prefers geometry = 54 members
Hence the number of members that prefers geometry are 54members
Learn more here: brainly.com/question/3796978
Answer:
A) 
Step-by-step explanation:
Given expression:

To factor the given expression completely.
Solution:
In order to factor the expression, we will factor in pairs.

We will factor the G.C.F of the terms in the pairs.
G.C.F. of
and
can be given as:


Thus, G.C.F. = 
G.C.F. of
and
can be given as:


Thus, G.C.F. = 
The expression after factoring the G.C.F. pairs is given as:

Taking G.C.F. of the whole expression as
is a common term.

The expression is completely factored.
Answer:
No
Step-by-step explanation:
bearing in mind that standard form for a linear equation means
• all coefficients must be integers, no fractions
• only the constant on the right-hand-side
• all variables on the left-hand-side, sorted
• "x" must not have a negative coefficient
![\bf (\stackrel{x_1}{-3}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{1}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{1-2}{2-(-3)}\implies \cfrac{-1}{2+3}\implies -\cfrac{1}{5} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-2=-\cfrac{1}{5}[x-(-3)]\implies y-2=-\cfrac{1}{5}(x+3)](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B2%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B2%7D~%2C~%5Cstackrel%7By_2%7D%7B1%7D%29%20%5C%5C%5C%5C%5C%5C%20slope%20%3D%20m%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%7B%20y_2-%20y_1%7D%7D%7B%5Cstackrel%7Brun%7D%7B%20x_2-%20x_1%7D%7D%5Cimplies%20%5Ccfrac%7B1-2%7D%7B2-%28-3%29%7D%5Cimplies%20%5Ccfrac%7B-1%7D%7B2%2B3%7D%5Cimplies%20-%5Ccfrac%7B1%7D%7B5%7D%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-2%3D-%5Ccfrac%7B1%7D%7B5%7D%5Bx-%28-3%29%5D%5Cimplies%20y-2%3D-%5Ccfrac%7B1%7D%7B5%7D%28x%2B3%29)
