Use the sum-product pattern
2
−
−
1
2
x
2
−
x
−
12
x2−x−12
2
+
3
−
4
−
1
2
x
2
+
3
x
−
4
x
−
12
x2+3x−4x−12
2
Common factor from the two pairs
2
+
3
−
4
−
1
2
x
2
+
3
x
−
4
x
−
12
x2+3x−4x−12
(
+
3
)
−
4
(
+
3
)
x
(
x
+
3
)
−
4
(
x
+
3
)
x(x+3)−4(x+3)
3
Rewrite in factored form
(
+
3
)
−
4(+3)x
(x+3)−4(x+3)
x(x+3)−4(x+3)
(−4)(+3)
(x−4)(x+3)
(x−4)(x+3)
Answer:
Im not sure if im correct sorry the i think the answer is $669
Step-by-step explanation:
1056-150=906 906-237=669
Answer:
I'm sorry me dont know kfnkdks
Answer:
1. 0, 2 π , π , 2 π/3 , 4 π/3
2. 7 π/6 , 11 π/6
Step-by-step explanation:
1. we want to find the value of theta
Let us represent theta by x for ease of documentation
So we have ;
sin 2x + sin x = 0
Mathematically;
sin 2x = 2sinxcosx
So;
2 sin x cos x + sin x = 0
sin x (2 cos x + 1) = 0
sin x = 0
or
2cos x + 1 = 0
x = arc sin (0)
within the given range;
x = theta = 0 , 2 π , π
For;
2 cos x + 1 = 0
2cos x = -1
cos x = -1/2
cos x = -0.5
x = arc cos (-0.5)
x = 2 π/3 , 4 π/3
2. cos 2 x = 1 + sin x
Mathematically;
cos 2 x = 1-2 sin^2x
let sin x = y
1-2y^2 = 1 + y
y = -2y^2
1 = -2y
y = -1/2
y = -0.5
sin x = y
sin x = -0.5
x = arc sin (-0.5)
x = 7 π/6 , 11 π/6