1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shtirl [24]
3 years ago
15

What is the point of symmetry for the circle (x + 2)2 + (y â 4)2 = 25?

Mathematics
1 answer:
irina [24]3 years ago
3 0
It's its center:

(-2, 4)

Can't read y-4 or y+4, change the sign.

y-4 ---> SOLUTION: (-2,4)

y+4 ---> SOLUTION: (-2, -4)
You might be interested in
A local 4-H club surveyed its members, and the following information was obtained: 14 members had rabbits, 10 had goats, 4 had b
Fiesta28 [93]
A) 68.29%
B) 34.15%
C) 24.39%
8 0
3 years ago
Diego solved an equation by multiplying both sides of the equation by 6. Then he checked that 6 is the correct solution by subst
Studentka2010 [4]
C.      on e2020 . Good luck!
6 0
3 years ago
If a circle has the dimensions? given, determine its circumference. a. 21 ft diameter b. Fraction 7 Over pi ft radius
amm1812

Answer:

14 or about 43.98 feet

Step-by-step explanation:

7 0
3 years ago
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
3 years ago
Running times for 400 meters are Normally distributed for young men between 18 and 30 years of age with a mean of 93 seconds and
kkurt [141]

Answer: The running time should at least 119.32 seconds to be in the top 5% of runners.

Step-by-step explanation:

Let X= random variable that represents the running time of men between 18 and 30 years of age.

As per given, X is normally distrusted with mean \mu=93\text{ seconds} and standard deviation \sigma=16\text{ seconds}.

To find: x in top 5% i.e. we need to find x such that P(X<x)=95% or 0.95.

i.e. P(\dfrac{X-\mu}{\sigma}

P(Z

Since, z-value for 0.95 p-value ( one-tailed) =1.645

So,

Hence, the running time should at least 119.32 seconds to be in the top 5% of runners.

6 0
3 years ago
Other questions:
  • Standard sheet of paper in the United States is 11 inches long and 8.5 inches wide. Each inch is 2.54 cm. How long and wide is a
    10·1 answer
  • A computer uses the function f(h)= 50h + 75 to calculate the total repair bill, f(h), for h number of hours worked. Find h if f(
    8·1 answer
  • You answer should say: Car _ by __ km/hr (Use care in answering!)
    14·1 answer
  • How many times larger is 2000 than 2
    5·2 answers
  • I report if u guess. A 98% confidence interval for a proportion is found to be (0.32, 0.38). What is the sample proportion?
    12·1 answer
  • Plss help meeeeeeeeeeeeeeee
    12·2 answers
  • Joanne puts 40 bacteria in a petri dish. The population of bacteria is doubling every hour. Which function best represents the s
    5·1 answer
  • Use the diagram and table shown to answer the question.
    7·2 answers
  • There is more than 1 answer and I already know 1 answer which is 3/4 but I don't know the rest. Please help!
    15·1 answer
  • PLEASE HELP NO LINKS!! The temperature change in a chemistry experiment was –2C every 30 min.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!