1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lutik1710 [3]
3 years ago
6

What is the answer to 11-2r+3=4

Mathematics
2 answers:
Mashcka [7]3 years ago
7 0
Using algebra, I obtained that r=5
wolverine [178]3 years ago
4 0
11-2r+3=4 first subtract 11 and 3 from both sides of the equation, so the equation looks like this:

-2r=-10 next, divide both sides by -2

r=5.
You might be interested in
Each observation indicates the primary position played by the Hall of Famers: pitcher (P), catcher (H), 1st base (1), 2nd base (
gregori [183]

Answer:

a. See below for the Frequency and Relative frequency Table.

b. Pitcher (P) is the position provides the most Hall of Famers.

c. 3rd base (3) is the position that provides the fewest Hall of Famers.

d. R is the outfield position that provides the most Hall of Famers.

e. Th number of Hall of Famers of Infielders which is 16 is less than the 18 Hall of Famers of those of outfielders.

Step-by-step explanation:

Note: This question not complete. The complete question is therefore provided before answering the question as follows:

Data for a sample of 55 members of the Baseball Hall of Fame in Cooperstown, New York, are shown here. Each observation indicates the primary position played by the Hall of Famers: pitcher (P), catcher (H), 1st base (1), 2nd base (2), 3rd base (3), shortstop (S), left field (L), center field (C), and right field (R).

L P C H 2 P R 1 S S 1 L P R P

P P P R C S L R P C C P P R P

2 3 P H L P 1 C P P P S 1 L R

R 1 2 H S 3 H 2 L P

a. Use frequency and relative frequency distributions to summarize the data.

b. What position provides the most Hall of Famers?

c. What position provides the fewest Hall of Famers?

d. What outfield position (L, C, or R) provides the most Hall of Famers?

e. Compare infielders (1, 2, 3, and S) to outfielders (L, C, and R).

The explanation of the answers is now provided as follows:

a. Use frequency and relative frequency distributions to summarize the data.

The frequency is the number of times a position occurs in the sample, while the relative frequency is calculated as the frequency of each position divided by the sample size multiplied by 100.

Therefore, we have:

<u>Frequency and Relative frequency Table  </u>

<u>Position</u>           <u>Frequency </u>         <u> Relative frequency (%) </u>

P                               17                             30.91%

H                               4                               7.27%

1                                5                               9.09%

2                               4                               7.27%

3                               2                               3.64%

S                               5                               9.09%

L                               6                               10.91%

C                              5                                 9.09%

R                        <u>      7     </u>                          <u>  12.73% </u>

Total                  <u>     55   </u>                          <u>   100%   </u>

b. What position provides the most Hall of Famers?

As it can be seen from the frequency table in part a, Pitcher (P) has the highest frequency which is 17. Therefore, Pitcher (P) is the position provides the most Hall of Famers.

c. What position provides the fewest Hall of Famers?

As it can be seen from the frequency table in part a, 3rd base (3) has the lowest frequency which is 2. Therefore, 3rd base (3) is the position that provides the fewest Hall of Famers.

d. What outfield position (L, C, or R) provides the most Hall of Famers?

As it can be seen from the frequency table in part a, we have:

Frequency of L = 6

Frequency of C = 5

Frequency of R = 7

Since R has the highest frequency which is 7 among the outfield position (L, C, or R), it implies that R is the outfield position that provides the most Hall of Famers.

e. Compare infielders (1, 2, 3, and S) to outfielders (L, C, and R).

Total frequency of infielders = Frequency of 1 + Frequency of 2 + Frequency of 3 + Frequency of S = 5 + 4 + 2 + 5 = 16

Total frequency of outfielders = Frequency of L + Frequency of C + Frequency of R = 6 + 5 + 7 = 18

The calculated total frequencies above imply that number of Hall of Famers of Infielders which is 16 is less than the 18 Hall of Famers of those of outfielders.

5 0
3 years ago
A quantity b varies jointly with c and d and inversely with eWhen b is 18, c is 4, d is 9, and e is 6What is the constant of var
777dan777 [17]

Answer:

constant of variation = 3

Step-by-step explanation:

we know that b varies jointly with c and d

so:

b∝c∝d

and b varies inversely with e, so

b∝\frac{1}{e}

and i will call the constant of variation k, this way we can make an equation for b in the following form:

b=k\frac{cd}{e}

this satisfy that b varies jointly with c and d (if b increases, c and d also increase) and inversely with e (if b increases, e decreases)

we know that when b is 18, c is 4, d is 9, and e is 6:

b=18\\c=4\\d=9\\e=6

substituting this in our equation for b:

b=k\frac{cd}{e}\\ 18=k\frac{(4)(9)}{6}

and we solve operations and clear for the constant of variation k:

18=k\frac{36}{6}\\ 18=6k\\\frac{18}{6}=k\\ 3=k

the constant of variation is 3.

4 0
3 years ago
Read 2 more answers
Multiply and give the answer in scientific notation:
kakasveta [241]

Step-by-step explanation:

<em>giv</em><em>en</em><em> </em>

<em>(1.5 \times  {10}^{4} )(8 \times  {10}^{8} )</em>

<em>in</em><em> </em><em>or</em><em>der</em><em> </em><em>to</em><em> </em><em>mak</em><em>e</em><em> </em><em>multipli</em><em>cation</em><em> </em><em>easi</em><em>er</em><em> </em><em>we</em><em> </em><em>ne</em><em>ed</em><em> </em><em>to</em><em> </em><em>cha</em><em>nge</em><em> </em><em>the</em><em> </em><em>1</em><em>.</em><em>5</em><em> </em><em>into</em><em> </em><em>a</em><em> </em><em>whol</em><em>e</em><em> </em><em>number</em><em> </em><em>form</em><em>.</em>

<em>thus</em>

<em>(15 \times  {10}^{ - 1}  \times  {10}^{4} )(8 \times  {10}^{8} )</em>

<em>= (15 \times  {10}^{4 - 1} )(8 \times  {10}^{8} )</em>

<em>First</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>indic</em><em>es</em><em> </em><em>appli</em><em>ed</em><em> </em><em>there</em>

<em>=</em><em>(</em><em>1</em><em>5</em><em>×</em><em>1</em><em>0</em><em>^</em><em>3</em><em>)</em><em>(</em><em>8</em><em>×</em><em>1</em><em>0</em><em>^</em><em>8</em><em>)</em>

<em>=</em><em>(</em><em>1</em><em>5</em><em>×</em><em>8</em><em>)</em><em>(</em><em>1</em><em>0</em><em>^</em><em>3</em><em>×</em><em>1</em><em>0</em><em>^</em><em>8</em><em>)</em>

<em>=</em><em>1</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>3</em><em>+</em><em>8</em><em> </em><em>(</em><em> </em><em>firs</em><em>t</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>indic</em><em>es</em><em>,</em><em> </em><em>whi</em><em>ch</em><em> </em><em>sta</em><em>tes</em><em> </em><em>that</em><em> </em><em>,</em><em> </em><em>num</em><em>bers</em><em> </em><em>o</em><em>f</em><em> the</em><em> </em><em>sa</em><em>me</em><em> </em><em>base</em><em> </em><em>multi</em><em>plying</em><em> </em><em>each</em><em> </em><em>o</em><em>ther</em><em>,</em><em> take</em><em> </em><em>on</em><em>e</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>base</em><em> </em><em>and</em><em> </em><em>add</em><em> </em><em>the</em><em> </em><em>expon</em><em>ent</em><em>.</em><em> </em><em>and</em><em> </em><em>clearly</em><em> </em><em>both</em><em> </em><em>1</em><em>5</em><em> </em><em>and</em><em> </em><em>8</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>base</em><em> </em><em>1</em><em>0</em>

<em>=</em><em>1</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em>

<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>2</em><em> </em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em>

<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>1</em><em>+</em><em>2</em>

<em>=</em><em>1</em><em>.</em><em>2</em><em>0</em><em>×</em><em>1</em><em>0</em><em>^</em><em>1</em><em>3</em>

<em>so</em><em> </em><em>the</em><em> </em><em>a</em><em>nswer</em><em> </em><em>is</em><em> </em><em>alt</em><em> </em><em>B</em>

7 0
3 years ago
Cylinder A has a radius of 7 inches and a height of 5 inches. Cylinder B has a volume of 490π. What is the percentage change in
sergejj [24]

Answer:

50% decrease

Step-by-step explanation:

I took the test

4 0
3 years ago
Read 2 more answers
the high school debate team is developing a logo to represent their club. A scale drawing of the logo design is presented below,
Fantom [35]

Answer:

The enlargement will be 25 times and the enlargement area will be $2250 \text{ inches}^2$.

Step-by-step explanation:

It is given that each grid unit is equal to 3 inches. SO we have to use this scale.

The total height of the scale drawing is 21 inch and the enlargement has a height given as 105 inches. Therefore it has scale factor of 5. It means that each dimension is enlarged by 5 times the dimension in the scale drawing. So the enlargement of the logo will be 25 times and the enlargement area will be 2250 square inches.

7 0
2 years ago
Other questions:
  • Another Rocket
    9·1 answer
  • An English professor assigns letter grades on a test according to the following scheme. A: Top 14% of scores B: Scores below the
    13·1 answer
  • A cube has edge length s units. Use an exponent to write an expression for its volume
    9·1 answer
  • the box that contains the salt lick is 1 1/4 feet by 1 2/3 feet 5/6 feet.how many cubes of salt lick fit in the box?explain or s
    8·2 answers
  • How do you solve for y in this equation 6x 2y=2?
    7·1 answer
  • What is the simplified form of the following expression ? 2x^2y+3x^2+4y+3x^2y+2y
    7·1 answer
  • Help I don't know the answer
    10·1 answer
  • Find a, b, and <br><br>plz help me and don't spam me with links ​
    14·1 answer
  • A 28 foot ladder is propped against a wall. The base of the ladder is 19 ft from the wall how far up the wall does the ladder go
    10·1 answer
  • Hello! sorry need help again. :) Please solve the problem below...
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!