Welp. I sure hope you like the Pythagorean theorem...
Top line:
One point is (-2,-2) while the other is (3,-3)
Thus the distance in between is sqrt((3-(-2))^2+(-3-(-2))^2)=sqrt(5^2+(-1)^2)=sqrt(26)
Most right line:
One point is (4,-6) while the other is (3,-3)
Thus the distance in between is sqrt((3-4)^2+(-3-(-6))^2)=sqrt((-1)^2+3^2)=sqrt(10)
Most bottom line:
One point is (1,-6) while the other is (4,-6)
Thus the distance in between is sqrt(4-1)^2+(-6-(-6))^2)=sqrt(3^2+0^2)=sqrt(9)=3
Most bottom left line:
One point is (1,-6) while the other is (-2,-4)
Thus the distance in between is sqrt((1-(-2))^2+(-6-(-4))^2)=sqrt(3^2+(-2)^2)=sqrt(13)
Lastly the most left line:
One point is (-2,-2) while the other is (-2,-4)
Thus the distance in between is sqrt((-2-(-2))^2+(-2-(-4))^2)=sqrt(0^2+(2)^2)=sqrt(4)=2
Thus to find the perimeter, we add up all the sides to get
sqrt(26)+sqrt(10)+3+sqrt(13)+2=16.8668 or B
Answer:
<h3>35</h3><h3 />
Step-by-step explanation:
see attached image.
perimeter of trapezoid = sides (6 + 8 + 5 + 8 + 8)
= 35