1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djverab [1.8K]
4 years ago
6

PLEASE HELP ME ASAP!!

Mathematics
1 answer:
solong [7]4 years ago
5 0
We have to find midpoint M of the diagonal AC (or BD, there is no difference) so:

M=\left(\dfrac{x_A+x_C}{2},\dfrac{y_A+y_C}{2}\right)=\left(\dfrac{-2+4}{2},\dfrac{4+(-2)}{2}\right)=\left(\dfrac{2}{2},\dfrac{2}{2}\right)=\\\\\\=\boxed{(1,1)}
You might be interested in
Item 5
Xelga [282]

Answer:

4 (-1-11) + 2 (17)

Answer 2 is -14

Step-by-step explanation:

6 0
3 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
7 kids on the basketball team return sick from a weekend playing games at Lakenheath High school with a virus. The aggressive vi
Lilit [14]

Answer:

It would take 6 days for 500 students to be affected.

Step-by-step explanation:

Given that:

1. Seven kids returned with the virus.

2. The aggressive virus spreads at 130% each day.

We want to find how many days until 500 students are infected by the virus.

First day:

7 students have the virus, 130% of 7 student will contract the virus again.

130% of 7 = (130/100) × 7

= 1.3 × 7 = 9.1 ≈ 9

9 new students are affected

New total affected = 7 + 9 = 16 students.

Day 2:

Affected = 1.3 × 16 = 20.8 ≈ 20

New total affected = 20 + 16 = 36

Day3

Affected = 1.3 × 36 = 46.8 ≈ 46

New total affected = 36 + 46 = 82

Day4

Affected = 1.3 × 82 = 106.6 ≈ 106

New total affected = 106 + 82 = 188

Day5

Affected = 1.3 × 188 = 244.4 ≈ 244

New total affected = 244 + 188 = 432

Day6

Affected = 1.3 × 432 = 561.6 ≈ 561

New total affected = 561 + 432 = 993

Therefore, it would take 6 days for 500 students to be affected.

8 0
3 years ago
What is the value of the digit in the ten thousands place in the number 67,868 ?
Veseljchak [2.6K]

9514 1404 393

Answer:

  60,000

Step-by-step explanation:

To find your answer, set all other digits to zero.

  60,000

is the value of the digit 6 in the 10 thousands place.

8 0
3 years ago
There are 24 tiles in a stack.Each tile is 8mm thick.How high is the stack in metres?
Yuki888 [10]
24 × 8 = 192 mm ;
1 mm = 0.001 m ;
192 × 0.001 = 0.192 m ;
6 0
3 years ago
Other questions:
  • A student’s construction of the perpendicular bisector of is shown below. What is the student’s error?
    7·1 answer
  • What is the system of solution x+y=18 and y=-4x
    9·2 answers
  • What is the value of X?
    6·2 answers
  • HELPPP! With a ruler, Diamond determines the diameter of a golf ball to be 4.2 centimeters (a radius of 2.1 cm) and the diameter
    11·1 answer
  • A citrus grower harvested 2,419 grapefruit and 4,395 oranges last season. He packed the grapefruit in boxes of 18 and the orange
    6·2 answers
  • Need help for the answer will give brainliest
    6·1 answer
  • there are 4 pizzas and 3 people. how much would each eraser get if each person eats the same amount.​
    15·1 answer
  • The pie charts show information about the favourite animal of each student at school A and of each
    13·1 answer
  • Looking for geometry proof help on a problem with parallelograms and an isosceles triangle
    15·1 answer
  • Nineteen less than a number is 25 write the equation
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!