1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marysya12 [62]
3 years ago
12

Use Gaussian Elimination to find an equation of a polynomial that passes through points A(-5,-3), B(-2,3). C(3,3), D(6,19). Indi

cates row operations with the R notation. Leave coefficients in fraction form, do not report in decimals.

Mathematics
1 answer:
Marrrta [24]3 years ago
3 0

Answer:

The polynomial equation that passes through the points is 2-\frac{2}{3}x+\frac{1}{12}x^{2}+\frac{1}{12}x^{3}

Step-by-step explanation:

Suppose you have a function y = f(x) which goes through these points

A(-5,-3), B(-2,3). C(3,3), D(6,19)

there is a polynomial P(x) of degree 3 which goes through these point.

We use the fact that <em>four distinct points will determine a cubic function.</em>

P(x) is the degree 3 polynomial through the 4 points, a standard way to write it is

P(x) = a+bx+cx^2+dx^3

Next replace the given points one by one, which leads to a system of 4 equations and 4 variables (namely a,b,c,d)

-3=a+b\cdot-5+c\cdot -5^2+d\cdot -5^3\\3=a+b\cdot-2+c\cdot -2^2+d\cdot -2^3\\3=a+b\cdot 3+c\cdot 3^2+d\cdot 3^3\\19=a+b\cdot 6+c\cdot 6^2+d\cdot 6^3

We can rewrite this system as follows:

-3=a-5\cdot b+25\cdot c-125\cdot d\\3=a-2\cdot b+4\cdot c-8\cdot d\\3=a+3\cdot b+9\cdot c+27\cdot d\\19=a+6\cdot b+36\cdot c+216\cdot d

To use the Gaussian Elimination we need to express the system of linear equations in matrix form (<em>the matrix equation Ax=b</em>).

The coefficient matrix (A) for the above system is

\left[\begin{array}{cccc}1&-5&25&-125\\1&-2&4&-8\\1&3&9&27\\1&6&36&216\end{array}\right]

the variable matrix (x) is

\left[\begin{array}{c}a&b&c&d\end{array}\right]

and the constant matrix (b) is

\left[\begin{array}{c}-3&3&3&19\end{array}\right]

We also need the augmented matrix, it is obtained by appending the columns of the coefficient matrix and the constant matrix.

\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\1&-2&4&-8&3\\1&3&9&27&3\\1&6&36&216&19\end{array}\right]

To transform the augmented matrix to the reduced row echelon form we need to follow these steps:

  • Subtract row 1 from row 2 \left(R_2=R_2-R_1\right)

\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&3&-21&117&6\\1&3&9&27&3\\1&6&36&216&19\end{array}\right]

  • Subtract row 1 from row 3 \left(R_3=R_3-R_1\right)

\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&3&-21&117&6\\0&8&-16&152&6\\1&6&36&216&19\end{array}\right]

  • Subtract row 1 from row 4 \left(R_4=R_4-R_1\right)

\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&3&-21&117&6\\0&8&-16&152&6\\0&11&11&341&22\end{array}\right]

  • Divide row 2 by 3 \left(R_2=\frac{R_2}{3}\right)

\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&1&-7&39&2\\0&8&-16&152&6\\0&11&11&341&22\end{array}\right]

  • Add row 2 multiplied by 5 to row 1 \left(R_1=R_1+\left(5\right)R_2\right)

\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&8&-16&152&6\\0&11&11&341&22\end{array}\right]

  • Subtract row 2 multiplied by 8 from row 3 \left(R_3=R_3-\left(8\right)R_2\right)

\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&0&40&-160&-10\\0&11&11&341&22\end{array}\right]

  • Subtract row 2 multiplied by 11 from row 4 \left(R_4=R_4-\left(11\right)R_2\right)

\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&0&40&-160&-10\\0&0&88&-88&0\end{array}\right]

  • Divide row 3 by 40 \left(R_3=\frac{R_3}{40}\right)

\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&0&1&-4&-1/4\\0&0&88&-88&0\end{array}\right]

  • Add row 3 multiplied by 10 to row 1 \left(R_1=R_1+\left(10\right)R_3\right)

\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&-7&39&2\\0&0&1&-4&-1/4\\0&0&88&-88&0\end{array}\right]

  • Add row 3 multiplied by 7 to row 2 \left(R_2=R_2+\left(7\right)R_3\right)

\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&88&-88&0\end{array}\right]

  • Subtract row 3 multiplied by 88 from row 4 \left(R_4=R_4-\left(88\right)R_3\right)

\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&0&264&22\end{array}\right]

  • Divide row 4 by 264 \left(R_4=\frac{R_4}{264}\right)

\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&0&1&1/12\end{array}\right]

  • Subtract row 4 multiplied by 30 from row 1 \left(R_1=R_1-\left(30\right)R_4\right)

\left[\begin{array}{cccc|c}1&0&0&0&2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&0&1&1/12\end{array}\right]

  • Subtract row 4 multiplied by 11 from row 2 \left(R_2=R_2-\left(11\right)R_4\right)

\left[\begin{array}{cccc|c}1&0&0&0&2\\0&1&0&0&-2/3\\0&0&1&-4&-1/4\\0&0&0&1&1/12\end{array}\right]

  • Add row 4 multiplied by 4 to row 3 \left(R_3=R_3+\left(4\right)R_4\right)

\left[\begin{array}{cccc|c}1&0&0&0&2\\0&1&0&0&-2/3\\0&0&1&0&1/12\\0&0&0&1&1/12\end{array}\right]

From the reduced row-echelon form the solutions are:

\left[\begin{array}{c}a=2&b=-2/3&c=1/12&d=1/12\end{array}\right]

The polynomial P(x) is:

2-\frac{2}{3}x+\frac{1}{12}x^{2}+\frac{1}{12}x^{3}

We can check our solution plotting the polynomial and checking that it passes through the points.

You might be interested in
Simplify this expression.
kobusy [5.1K]
It’s A i too the test
7 0
3 years ago
Therefore, the formula for the volume of the sphere can be derived by writing an expression that represents the volume of
torisob [31]

Step-by-step explanation:

 The volume of a cone can be derived by writing an expression that represents the volume of one cone within the cylinder.

the expression for the volume of a cylinder is

volume-of-cylinder= \pi r^2h

the volume of a cone is a part of the volume of a cylinder

volume-of-cone= \frac{1}{3} \pi r^2h

Hence the volume of a cone can be derived by dividing the volume of a cylinder by 3

6 0
3 years ago
One tank is filling at a rate of 5 gallon per 7 hour. A second tank is 8 10
seraphim [82]

Answer:

the second one

Step-by-step explanation:

8 0
2 years ago
A right triangular prism has a height of 26 cm and base edges of 10 cm, 24 cm, and 26 cm. What is the lateral area of the prism?
horrorfan [7]
The lateral area is 1560 cm².

The lateral area is the area of the lateral faces (the faces that are not bases).  The dimensions of these are:
24 by 26
10 by 26
26 by 26

These are all rectangles.  The area of each rectangle is given by length * width:
24*26 = 624
10*26 = 260
26*26 =676

624+260+676=1560
3 0
2 years ago
What is the reciprocal of 9/14
KATRIN_1 [288]
14/9 because u just flip it to cancel it out
7 0
3 years ago
Read 2 more answers
Other questions:
  • It’s says 1/2 teaspoon per gallon bucket holds 26 gallons how many teaspoons?
    13·2 answers
  • I can’t figure out the space that doesn’t have a number. any help?
    7·1 answer
  • Ordenar de mayor a menor los números racionales <br><br>​
    9·1 answer
  • -7w + 2(w + 8) = -24<br><br> Can you help me find w?
    13·1 answer
  • What’s is this one ????
    9·1 answer
  • Julia owns a clothing shop and went to a merchant's fair where she was able to buy 6 leather belts for $130. She then sells them
    8·1 answer
  • Ashley baked 162 muffins. She baked 12 muffins in each batch.How many batches of muffins did she ?
    10·2 answers
  • I need help people please help me
    5·1 answer
  • What is the area of a square whose diagonal is 4?<br><br> A. 8<br> B.32<br> C.36<br> D.64
    14·2 answers
  • Given Set \(M:\ 0,\ 1,\ 3,\ 4,\ 7\) and Set \(N:\ 1,\ 2,\ 3,\ 4,\ 5,\ 9\).
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!