1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marysya12 [62]
3 years ago
12

Use Gaussian Elimination to find an equation of a polynomial that passes through points A(-5,-3), B(-2,3). C(3,3), D(6,19). Indi

cates row operations with the R notation. Leave coefficients in fraction form, do not report in decimals.

Mathematics
1 answer:
Marrrta [24]3 years ago
3 0

Answer:

The polynomial equation that passes through the points is 2-\frac{2}{3}x+\frac{1}{12}x^{2}+\frac{1}{12}x^{3}

Step-by-step explanation:

Suppose you have a function y = f(x) which goes through these points

A(-5,-3), B(-2,3). C(3,3), D(6,19)

there is a polynomial P(x) of degree 3 which goes through these point.

We use the fact that <em>four distinct points will determine a cubic function.</em>

P(x) is the degree 3 polynomial through the 4 points, a standard way to write it is

P(x) = a+bx+cx^2+dx^3

Next replace the given points one by one, which leads to a system of 4 equations and 4 variables (namely a,b,c,d)

-3=a+b\cdot-5+c\cdot -5^2+d\cdot -5^3\\3=a+b\cdot-2+c\cdot -2^2+d\cdot -2^3\\3=a+b\cdot 3+c\cdot 3^2+d\cdot 3^3\\19=a+b\cdot 6+c\cdot 6^2+d\cdot 6^3

We can rewrite this system as follows:

-3=a-5\cdot b+25\cdot c-125\cdot d\\3=a-2\cdot b+4\cdot c-8\cdot d\\3=a+3\cdot b+9\cdot c+27\cdot d\\19=a+6\cdot b+36\cdot c+216\cdot d

To use the Gaussian Elimination we need to express the system of linear equations in matrix form (<em>the matrix equation Ax=b</em>).

The coefficient matrix (A) for the above system is

\left[\begin{array}{cccc}1&-5&25&-125\\1&-2&4&-8\\1&3&9&27\\1&6&36&216\end{array}\right]

the variable matrix (x) is

\left[\begin{array}{c}a&b&c&d\end{array}\right]

and the constant matrix (b) is

\left[\begin{array}{c}-3&3&3&19\end{array}\right]

We also need the augmented matrix, it is obtained by appending the columns of the coefficient matrix and the constant matrix.

\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\1&-2&4&-8&3\\1&3&9&27&3\\1&6&36&216&19\end{array}\right]

To transform the augmented matrix to the reduced row echelon form we need to follow these steps:

  • Subtract row 1 from row 2 \left(R_2=R_2-R_1\right)

\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&3&-21&117&6\\1&3&9&27&3\\1&6&36&216&19\end{array}\right]

  • Subtract row 1 from row 3 \left(R_3=R_3-R_1\right)

\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&3&-21&117&6\\0&8&-16&152&6\\1&6&36&216&19\end{array}\right]

  • Subtract row 1 from row 4 \left(R_4=R_4-R_1\right)

\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&3&-21&117&6\\0&8&-16&152&6\\0&11&11&341&22\end{array}\right]

  • Divide row 2 by 3 \left(R_2=\frac{R_2}{3}\right)

\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&1&-7&39&2\\0&8&-16&152&6\\0&11&11&341&22\end{array}\right]

  • Add row 2 multiplied by 5 to row 1 \left(R_1=R_1+\left(5\right)R_2\right)

\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&8&-16&152&6\\0&11&11&341&22\end{array}\right]

  • Subtract row 2 multiplied by 8 from row 3 \left(R_3=R_3-\left(8\right)R_2\right)

\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&0&40&-160&-10\\0&11&11&341&22\end{array}\right]

  • Subtract row 2 multiplied by 11 from row 4 \left(R_4=R_4-\left(11\right)R_2\right)

\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&0&40&-160&-10\\0&0&88&-88&0\end{array}\right]

  • Divide row 3 by 40 \left(R_3=\frac{R_3}{40}\right)

\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&0&1&-4&-1/4\\0&0&88&-88&0\end{array}\right]

  • Add row 3 multiplied by 10 to row 1 \left(R_1=R_1+\left(10\right)R_3\right)

\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&-7&39&2\\0&0&1&-4&-1/4\\0&0&88&-88&0\end{array}\right]

  • Add row 3 multiplied by 7 to row 2 \left(R_2=R_2+\left(7\right)R_3\right)

\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&88&-88&0\end{array}\right]

  • Subtract row 3 multiplied by 88 from row 4 \left(R_4=R_4-\left(88\right)R_3\right)

\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&0&264&22\end{array}\right]

  • Divide row 4 by 264 \left(R_4=\frac{R_4}{264}\right)

\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&0&1&1/12\end{array}\right]

  • Subtract row 4 multiplied by 30 from row 1 \left(R_1=R_1-\left(30\right)R_4\right)

\left[\begin{array}{cccc|c}1&0&0&0&2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&0&1&1/12\end{array}\right]

  • Subtract row 4 multiplied by 11 from row 2 \left(R_2=R_2-\left(11\right)R_4\right)

\left[\begin{array}{cccc|c}1&0&0&0&2\\0&1&0&0&-2/3\\0&0&1&-4&-1/4\\0&0&0&1&1/12\end{array}\right]

  • Add row 4 multiplied by 4 to row 3 \left(R_3=R_3+\left(4\right)R_4\right)

\left[\begin{array}{cccc|c}1&0&0&0&2\\0&1&0&0&-2/3\\0&0&1&0&1/12\\0&0&0&1&1/12\end{array}\right]

From the reduced row-echelon form the solutions are:

\left[\begin{array}{c}a=2&b=-2/3&c=1/12&d=1/12\end{array}\right]

The polynomial P(x) is:

2-\frac{2}{3}x+\frac{1}{12}x^{2}+\frac{1}{12}x^{3}

We can check our solution plotting the polynomial and checking that it passes through the points.

You might be interested in
Em um posto de combustível, o litro da gasolina estava custando R$2,40.Um cliente gastou R$72,00 para encher o tanque de seu car
Julli [10]

Answer:

english i think u need hekp

7 0
3 years ago
A stand at a farmer's market sells different types of apples, as shown in the table.
son4ous [18]

Answer:

Step-by-step explanation:

Apple B Cost

6 0
3 years ago
Jason's business computers need servicing. The expression 81x + 108 represents a contractor's total charges in dollars for fixin
Zielflug [23.3K]

Answer:

The Jason's company charges more than the contractor's company.

Step-by-step explanation:

There are two expressions given for total charges for two companies as 81 x+108 and 103 x+64.

Here x represents number of hours.

We are asked to find difference in total charges if that takes 45 minutes.

45 minutes = \frac{3}{4} hours.

Plug in this value for x.

81x+108 =81*\frac{3}{4} +108

Simplify it

60.75 +108 =168.75

Now, for 103x+64 =103 *\frac{3}{4} +64

Simplify it,

77.25+64=141.25

If we see the total charge for both companies for 45 minutes, the Jason's business computers charges more than contractor's company.

5 0
3 years ago
The value of y varies directly as x and y is 9 when x is -3 what constant of variation k?
Lady bird [3.3K]
Y/x=k

when y=9, then x= -3
        9/-3=-3
⇒ k= -3
7 0
3 years ago
The exact value of cos5pi/12 is:​
jonny [76]

Step 1: Convert \frac{5\pi }{12}, which is in radians into degrees. To convert it multiply by \frac{180}{\pi }

\frac{5\pi }{12} =\frac{180}{\pi }

900/12

75

Step 2: 75 degrees isn't on the unit circle but 45 degrees and 30 degrees is. Since 45 + 30 = 75 you can use the cosine of 45 and 30 to find the exact value

cos45 = \frac{\sqrt{2} }{2}

cos30 =\frac{\sqrt{3} }{2}

Step 3: Add the cos45 and cos30 to get cos5pi/12

\frac{\sqrt{2} }{2} +\frac{\sqrt{3} }{2} = \frac{\sqrt{2}+\sqrt{3}}{2}

Hope this helped!

4 0
3 years ago
Other questions:
  • Isaac drinks 8 glasses of water each day. He says he will drink 2920 glasses of water in a year that has 365 days. Is the answer
    11·1 answer
  • (MULTIPLE CHOICE QUESTION)
    8·2 answers
  • What 2 ways show how to round 134 ? <br> 100<br> 200<br> 30<br> 140<br> 130
    5·2 answers
  • The inverse of f(x) is a function. true or false
    7·2 answers
  • What the answer to this
    12·2 answers
  • What is the value of x in the equation -6x= 5x+22? Mark this and return Save and Exit Submit​
    9·2 answers
  • Help please!!!!!!!?!
    13·1 answer
  • Clayton sells computers. He makes $220 per week plus $50 for each computer he sells. He must make at least $770 per week.
    10·1 answer
  • SOMEONE WHO'S GOOD AT MATH PLEASE ANSWER TODAY ASAP CORRECTLY WILL GIVE BRAINLIEST
    6·2 answers
  • A seesaw has a plank of 4.5 m long which is supported by a pivot at its center and moves in a vertical plane above the pivot. If
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!