1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paul [167]
3 years ago
10

Plzzzzz help I’ll mark brainlest

Mathematics
2 answers:
irina1246 [14]3 years ago
3 0

When it says find g(-10) it meant when x is -10 what is the solution. By the way the solution is -110.

goblinko [34]3 years ago
3 0

Answer:

-110 is the answer


Hope this helped!!!XD


Also, can I please get brainliest?

Step-by-step explanation:


You might be interested in
Evaluate the expression 4x^4 y^3 when x=1/5 and y=6
wariber [46]

Answer:

5.5296

Step-by-step explanation:

to evaluate the expression 4x^4 y^3 we would substitute the value of x and y into it and evaluate. since x = 1/5 and y = 6

4x^4 y^3

4 × x^4 × 4× y³

4 × (1/5)∧4 × 4 × 6³

4× (0.2)∧4 × 4 × 216

4 × 0.0016 × 864

0.0064 × 864

5.5296

5 0
3 years ago
What's the answer for this question? (The numbers after the letters are indexes btw) 27a9 x 18b5 x 4c2 Over 18a4 x 12b2 x 2c
zysi [14]

Answer:

\frac{27a^9 * 18b^5 * 4c^2 }{18a^4 * 12b^2 * 2c} = \frac{9}{2}a^5b^3c

Step-by-step explanation:

Given

\frac{27a^9 * 18b^5 * 4c^2 }{18a^4 * 12b^2 * 2c}

Required

Simplify

\frac{27a^9 * 18b^5 * 4c^2 }{18a^4 * 12b^2 * 2c}

Cancel out 18

\frac{27a^9 * b^5 * 4c^2 }{a^4 * 12b^2 * 2c}

Divide 4 and 2

\frac{27a^9 * b^5 * 2c^2 }{a^4 * 12b^2 *c}

Divide 27 and 12 by 3

\frac{9a^9 * b^5 * 2c^2 }{a^4 * 4b^2 *c}

Apply law of indices

\frac{9a^{9-4} * b^{5-2} * 2c^{2-1} }{4}

\frac{9a^5 * b^3 * 2c }{4}

Divide 2 and 4

\frac{9a^5 * b^3 * c}{2}

\frac{9a^5b^3c}{2}

Rewrite as:

\frac{9}{2}a^5b^3c

Hence:

\frac{27a^9 * 18b^5 * 4c^2 }{18a^4 * 12b^2 * 2c} = \frac{9}{2}a^5b^3c

4 0
2 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Solve for b<br><br> B=??????
kozerog [31]

Answer:

\frac{b-7}{b+1}=\frac{b-10}{b+4}

\left(b-7\right)\left(b+4\right)=\left(b+1\right)\left(b-10\right)

\left(b-7\right)\left(b+4\right)=b^2-3b-28

\left(b+1\right)\left(b-10\right)=b^2-9b-10

b^2-3b-28=b^2-9b-10

b^2-3b-28+28=b^2-9b-10+28

b^2-3b=b^2-9b+18

b^2-3b-\left(b^2-9b\right)=b^2-9b+18-\left(b^2-9b\right)

6b=18

\frac{6b}{6}=\frac{18}{6}

b=3

4 0
2 years ago
Use the given values of n and p to find the minimum usual value μ - 2σ and the maximum usual value μ + 2σ. Round your answer to
fenix001 [56]

Given Information:  

number of trials = n = 1042

Probability of success = p = 0.80

Required Information:  

Maximum usual value = μ + 2σ = ?

Minimum usual value = μ - 2σ = ?

Answer:

Maximum usual value = 859.51

Minimum usual value = 807.78

Step-by-step explanation:

In a binomial distribution, the mean μ is given by

μ = np

μ = 1042*0.80

μ = 833.6

The standard deviation is given by

σ = √np(1 - p)

σ = √1042*0.80(1 - 0.80)

σ = √833.6(0.20)

σ = 12.91

The Maximum and Minimum usual values are

μ + 2σ = 833.6 + 2*12.91

μ + 2σ = 833.6 + 25.82

μ + 2σ = 859.51

μ - 2σ = 833.6 - 25.82

μ - 2σ = 807.78

Therefore, the minimum usual value is 807.78 and maximum usual value is 859.51

8 0
3 years ago
Other questions:
  • Trevor’s total employment compensation is $33,500. If Trevor has no job expenses and his gross pay is $28,600, then his total em
    10·2 answers
  • The mean score on a test is 50. which CANNOT be true?
    5·2 answers
  • A farmer has 120 feet of fencing available to build a rectangular pen for her pygmy goats. She wants to give them as much room a
    10·1 answer
  • SOMEONE PLEASE HELP!<br><br> what is 2.3% written as a desimal
    6·2 answers
  • One season, the Cougars won 20 games. They played a total of 25 games.
    9·1 answer
  • 1.5 times the amount a bucket holds makes 6 gallons. How many gallons does the bucket
    14·1 answer
  • Point A is located at (-4, -13). Point B is located at (-4, 3). What is the distance between point A
    15·1 answer
  • Evaluate 60/d (60 divided by d), when d = 5
    7·1 answer
  • The equation to model Exponential Growth is:
    8·1 answer
  • (a) {(1)¹⁰⁰ + (−1)¹⁰¹+(2500)⁰} x2³​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!