Note that x² + 2x + 3 = x² + x + 3 + x. So your integrand can be written as
<span>(x² + x + 3 + x)/(x² + x + 3) = 1 + x/(x² + x + 3). </span>
<span>Next, complete the square. </span>
<span>x² + x + 3 = x² + x + 1/4 + 11/4 = (x + 1/2)² + (√(11)/2)² </span>
<span>Also, for the x in the numerator </span>
<span>x = x + 1/2 - 1/2. </span>
<span>So </span>
<span>(x² + 2x + 3)/(x² + x + 3) = 1 + (x + 1/2)/[(x + 1/2)² + (√(11)/2)²] - 1/2/[(x + 1/2)² + (√(11)/2)²]. </span>
<span>Integrate term by term to get </span>
<span>∫ (x² + 2x + 3)/(x² + x + 3) dx = x + (1/2) ln(x² + x + 3) - (1/√(11)) arctan(2(x + 1/2)/√(11)) + C </span>
<span>b) Use the fact that ln(x) = 2 ln√(x). Then put u = √(x), du = 1/[2√(x)] dx. </span>
<span>∫ ln(x)/√(x) dx = 4 ∫ ln u du = 4 u ln(u) - u + C = 4√(x) ln√(x) - √(x) + C </span>
<span>= 2 √(x) ln(x) - √(x) + C. </span>
<span>c) There are different approaches to this. One is to multiply and divide by e^x, then use u = e^x. </span>
<span>∫ 1/(e^(-x) + e^x) dx = ∫ e^x/(1 + e^(2x)) dx = ∫ du/(1 + u²) = arctan(u) + C </span>
<span>= arctan(e^x) + C.</span>
Answer:
<u>Equation: 87 + 91 + 86 + x = 360</u>
<u>Solution: 264 + x = 360</u>
<u>x = 360 - 264</u>
<u>x = 96</u>
Step-by-step explanation:
1. Let's review the information given to us to answer the question correctly:
First three Kelsea's test grades : 87, 91 and 86
2. What score must she get on her fourth test to receive at least an A- ?
Define variable: x that represents the grade needed by Kelsea on her fourth test to receive at least an A-
Equation: 87 + 91 + 86 + x = 360
Solution: 264 + x = 360
x = 360 - 264
x = 96
<u>Now you can understand if the previous work you did is correct</u>
<h3>Answer:</h3>
x = 2
<h3>Explanation:</h3>
The rule for secants is that the product of segment lengths (on the same line) from the point of intersection to the points on the circle is a constant for any given point of intersection. Here, that means ...
... 3×(3+5) = 4×(4+x)
... 6 = 4+x . . . . divide by 4
... 2 = x . . . . . . subtract 4
_____
<em>Comment on this secant relationship</em>
Expressed in this way, the relationship is true whether the point of intersection is inside the circle or outside.
Answer:
51.9
Step-by-step explanation:
because one side is 30 and another is 60, you can assume the 3rd side of the triangle is 51.9 because of the 30-60-90 rule which states that if each angle of a triangle is 30, 60, and 90, then the side lengths equal x (30), 2x (60), and x√(3) (~51.9).