Answer:
Step-by-step explanation:
In order to find the horizontal distance the ball travels, we need to know first how long it took to hit the ground. We will find that time in the y-dimension, and then use that time in the x-dimension, which is the dimension in question when we talk about horizontal distance. Here's what we know in the y-dimension:
a = -32 ft/s/s
v₀ = 0 (since the ball is being thrown straight out the window, the angle is 0 degrees, which translates to no upwards velocity at all)
Δx = -15 feet (negative because the ball lands 15 feet below the point from which it drops)
t = ?? sec.
The equation we will use is the one for displacement:
Δx =
and filling in:
which simplifies down to
so
so
t = .968 sec (That is not the correct number of sig fig's but if I use the correct number, the answer doesn't come out to be one of the choices given. So I deviate from the rules a bit here out of necessity.)
Now we use that time in the x-dimension. Here's what we know in that dimension specifically:
a = 0 (acceleration in this dimension is always 0)
v₀ = 80 ft/sec
t = .968 sec
Δx = ?? feet
We use the equation for displacement again, and filling in what we know in this dimension:
Δx =
and of course the portion of that after the plus sign goes to 0, leaving us with simply:
Δx = (80)(.968)
Δx = 77.46 feet
Answer:
Answer is option 2
Step-by-step explanation:
We know that Angle M = Angle G (given in diagram)
We also know that Angle L in triangle LMN is equal to Angle L in triangle LGH
As two angles are equal in both triangles they are similar.
But why is it Triangle LGH instead of Triangle HGL?
As we know M=G therefore they should be in the same place in the name Of the triangle. In triangle LMN M is in the middle therefore Angle G should also be in the middle
Total gasoline = 10 gallons
Gasoline left after 100 miles = 5 gallons
Gasoline used in 100 miles
= Total gasoline - Gasoline left after 100 miles
= 10 gallons - 5 gallons
= 5 gallons
Gasoline used in 1 mile
= Gasoline used in 100 miles/100
= 5 gallons/100
= 0.05 gallons
For straight lines the constant rate of change(slope) is a constant(always the same) For every unit moved on the x-axis two more are moved on the y-axis