1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
r-ruslan [8.4K]
3 years ago
7

A store had 1000 glasses. Each month, 10% of the glasses are sold. If it continued for each month, the store keeper can predict

the number of months to sell all the glasses. Which one of the following would best model this sequence? Explicit arithmetic function Recursive arithmetic process Explicit geometric function Recursive geometric process
Mathematics
1 answer:
spin [16.1K]3 years ago
7 0
I dont know sorry but im sure sonmeone else can help you im reallu sorry
You might be interested in
Please help! Related to limits! 100 points!
creativ13 [48]

Answer:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

General Formulas and Concepts:
<u>Pre-Calculus</u>

2x2 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b \\ c & d \end{array} \right| = ad - bc

3x3 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right| = a \left| \begin{array}{ccc} e & f \\ h & i \end{array} \right| - b \left| \begin{array}{ccc} d & f \\ g & i \end{array} \right| + c \left| \begin{array}{ccc} d & e \\ g & h \end{array} \right|

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_{x \to c} x = c

Limit Property [Multiplied Constant]:
\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)

Special Limit Rule [L’Hopital’s Rule]:
\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}

Derivatives

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

I will not be able to fit in all the derivative work and will assume you can take derivatives with ease.

<u />

<u>Step 1: Define</u>

<em>Identify given.</em>

<em />\displaystyle \Delta (x) = \left| \begin{array}{ccc} \tan x & \tan (x + h) & \tan (x + 2h) \\ \tan (x + 2h) & \tan x & \tan (x + h) \\ \tan (x + h) & \tan (x + 2h) & \tan x \end{array} \right|

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2}

<u>Step 2: Find Limit Pt. 1</u>

  1. [Function] Simplify [3x3 and 2x2 Matrix Determinant]:
    \displaystyle \Delta (x) = \tan^3 (2h + x) + \tan^3 (h + x) + \tan^3 x - 3 \tan x \tan (h + x) \tan (2h + x)
  2. [Function] Substitute in <em>x</em>:
    \displaystyle \Delta \bigg( \frac{\pi}{3} \bigg) = \tan^3 \bigg( 2h+  \frac{\pi}{3} \bigg) + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) + 3\sqrt{3} - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h+  \frac{\pi}{3} \bigg)

<u>Step 3: Find Limit Pt. 2</u>

  1. [Limit] Rewrite [Limit Property - Multiplied Constant]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \lim_{h \to 0} \frac{\Delta (\frac{\pi}{3})}{h^2}
  2. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \bigg( \frac{0}{0} \bigg)

Since we have an indeterminant form, we will have to use L'Hopital's Rule. We can <em>differentiate</em> using basic differentiation techniques listed above under "<u>Calculus</u>":

\displaystyle \frac{d \Delta (\frac{\pi}{3})}{dh} = -3\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \tan \bigg( 2h + \frac{\pi}{3} \bigg) + tan^2 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 3 \tan^2 \bigg( h + \frac{\pi}{3} + 3 \bigg] - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 6 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 6 \bigg]

\displaystyle \frac{d}{dh} h^2 = 2h

Using L'Hopital's Rule, we can <em>substitute</em> the derivatives and evaluate again. When we do so, we should get <em>another</em> indeterminant form. We will need to use L'Hopital's Rule <em>again</em>:

\displaystyle \frac{d^2 \Delta (\frac{\pi}{3})}{dh^2} = \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] - 2\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 1 \bigg] - \sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg]

\displaystyle + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] - \sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle - 2\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg] + 2 \tan^3 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle \frac{d^2}{dh^2} h^2 = 2

<em>Substituting in </em>the 2nd derivative found via L'Hopital's Rule should now give us a numerical value when evaluating the limit using limit rules and the unit circle:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

∴ we have <em>evaluated</em> the given limit.

---

Learn more about limits: brainly.com/question/27438198

---

3 0
2 years ago
It costs $150 to rent a party room at Pizza-n-Games, plus $6 per person for pizza and $5 per person for game tickets. The expres
goldfiish [28.3K]

Answer:

45


Step-by-step explanation:


4 0
4 years ago
Read 2 more answers
23 more than jenny’s score is 52 use the variable j to represent her score
damaskus [11]

finish the question

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Find the value of x write your final answer as x=...
Anastaziya [24]

Answer:

Step-by-step explanation:

The small square represents a 90 degree angle. So you know 1 angle

5x + 4x + 90 = 360 because you have a circle in the center. Combine left.

9x + 90 = 360         Subtract 90 from both sides

9x = 360 - 90          Combine

9x = 270                  Divide by 9

x = 270/9

x = 30

5 0
2 years ago
5(x - 4) + 7(x + 1)<br> Math
goldenfox [79]

Answer:

Distribute

5x - 20 + 7x + 7

either add like terms or take away

12x -13 or -20 2x + 7

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • A company in Maryland has developed a device that can be attached to car engines, which it believes will increase the miles per
    13·1 answer
  • Fiona and her friends are playing a game by guessing where a coin will land when it is randomly dropped inside the square shown
    6·2 answers
  • Elijah has saved $10. He wants to buy shoes for $14. That would make his money situation to be.
    9·1 answer
  • Delilah does 184184184 jumping jacks in 444 minutes. She does her jumping jacks at a constant rate.
    11·2 answers
  • Are the functions commutative or not commutative.
    12·1 answer
  • Ten thousand programs are printed for the basketball game. Only one displays the winning number. What is the probability that yo
    15·2 answers
  • A local clothing store marked down every item in the store by 30%. What would be the sale price of an item that was selling for
    5·1 answer
  • 5. Choose the equation of a line that is perpendicular to the given line and that passes through the given
    12·2 answers
  • Which number is the greatest?<br> O 5.1 x 10^6<br> O 6.55 X 10^5<br> O 4.75 X 10^6<br> O 9 X 10^5
    15·1 answer
  • Which equation is equivalent to the expression (-2x to the power of two) (3x to the power of 5)?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!