Answer: compare the relative strength of coefficients.
Step-by-step explanation: The Coefficient of determination usually denoted as R^2 is obtained by taking the squared value of the correlation Coefficient (R). It's value ranges from 0 to 1 and the value obtained gives the proportion of variation in the dependent variable which could be attributed to it's correlation or relationship to th independent variable. With a R^2 value close to 1, this means a large portion of Variation in a variable A could be explained due to changes in variable B while a low value signifies a low variance between the variables. Hence, the Coefficient of determination is used in comparing the relative strength of the Coefficients in other to establish whether a weak or strong relationship exist.
9514 1404 393
Answer:
$2.50
Step-by-step explanation:
The question asks for the total cost of a notebook and pen together. We don't need to find their individual costs in order to answer the question.
Sometimes we get bored solving systems of equations in the usual ways. For this question, let's try this.
The first equation has one more notebook than pens. The second equation has 4 more notebooks than pens. If we subtract 4 times the first equation from the second, we should have equal numbers of notebooks and pens.
(8n +4p) -4(3n +2p) = (16.00) -4(6.50)
-4n -4p = -10.00 . . . . . . . . . . . simplify
n + p = -10.00/-4 = 2.50 . . . . divide by the coefficient of (n+p)
The total cost for one notebook and one pen is $2.50.
__
<em>Additional comment</em>
The first equation has 1 more notebook than 2 (n+p) combinations, telling us that a notebook costs $6.50 -2(2.50) = $1.50. Then the pen is $2.50 -1.50 = $1.00.
One could solve for the costs of a notebook (n) and a pen (p) individually, then add them together to answer the question. We judge that to be more work.
Domain: -∞<x<∞
Range: -∞<x<∞
X-Intercept: x=0
Y-Intercept: y=0
Increasing on the interval of 0<x<∞
<span>Decreasing on the interval of -∞<x<0
</span>When A=0, the graph equals y=0
- When A is greater than 1, it makes the graph skinnier than <span>f(x)=|x|
- When A is less than 1 but greater than 0, it makes the graph fatter than </span><span>f(x)=|x|
- When A turns negative, it flips the graph upside down.
-When B is greater than 0, it translates the graph to the right
- When B is less than 0, it translates the graph to the left
When C is greater than 0, the graph moves upwards
When C is less than 0, the graph moves downwards</span>