1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
3 years ago
8

Watz is one other way to name 1/3

Mathematics
1 answer:
Vlada [557]3 years ago
7 0
Is this in regards to probability?
The ones I can think of are one third, 1 to 3, and 1:3
You might be interested in
a triangle has one angle that measures 32 degrees and one angle that measures 102degrees. the measure of the triangle's thrid an
shutvik [7]

46

Step-by-step explanation:

all angles must add to 180

32+102= 134

180-134= 46

correct me if im wrong:)

3 0
3 years ago
Yooo can somebody help ill give you 10 or 22 points pls I need help!!!
dezoksy [38]

Answer:

The answer is 1475 have a nice day! <3

5 0
2 years ago
Read 2 more answers
Can I get some help plz
saul85 [17]
The line y=-x-3 begins in Q II and ends in Q IV.  Since you have the "equal to or greater than" operator, the shaded area is ABOVE this line, and the line itself is dark (shaded) because of the "equal to."

4 0
3 years ago
Use the limit comparison test to determine whether ∑n=19∞an=∑n=19∞8n3−2n2+196+3n4 converges or diverges.
sattari [20]

Answer:

Diverges

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}

<u>Calculus</u>

Limits

  • Limit Rule [Variable Direct Substitution]:                                                     \displaystyle \lim_{x \to c} x = c

Series Convergence Tests

  • P-Series:                                                                                                         \displaystyle \sum^{\infty}_{n = 1} \frac{1}{n^p}
  • Direct Comparison Test (DCT)
  • Limit Comparison Test (LCT):                                                                       \displaystyle  \lim_{n \to \infty} \frac{a_n}{b_n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \sum^{\infty}_{n = 19} \frac{8n^3 - 2n^2 + 19}{6 + 3n^4}

<u>Step 2: Apply DCT</u>

  1. Define Comparison:                                                                                     \displaystyle \displaystyle \sum^{\infty}_{n = 19} \frac{n^3}{n^4}
  2. [Comparison Sum] Simplify:                                                                         \displaystyle \displaystyle \sum^{\infty}_{n = 19} \frac{1}{n}
  3. [Comparison Sum] Determine convergence:                                             \displaystyle \displaystyle \sum^{\infty}_{n = 19} \frac{1}{n} = \infty , \ \text{div by P-Series}
  4. Set up inequality comparison:                                                                     \displaystyle\frac{8n^3 - 2n^2 + 19}{6 + 3n^4} \geq \frac{1}{n}
  5. [Inequality Comparison] Rewrite:                                                                 \displaystyle n(8n^3 - 2n^2 + 19) \geq 6 + 3n^4
  6. [Inequality Comparison] Simplify:                                                                 \displaystyle 8n^4 - 2n^3 + 19n \geq 6 + 3n^4 \ \checkmark \text{true}

∴ the sum  \displaystyle \sum^{\infty}_{n = 19} \frac{8n^3 - 2n^2 + 19}{6 + 3n^4}  is divergent by DCT.

<u>Step 3: Apply LCT</u>

  1. Define:                                                                                                           \displaystyle a_n = \frac{8n^3 - 2n^2 + 19}{6 + 3n^4}, \ b_n = \frac{1}{n}
  2. Substitute in variables [LCT]:                                                                       \displaystyle  \lim_{n \to \infty} \frac{8n^3 - 2n^2 + 19}{6 + 3n^4} \cdot n
  3. Simplify:                                                                                                         \displaystyle  \lim_{n \to \infty} \frac{8n^4 - 2n^3 + 19n}{6 + 3n^4}
  4. [Limit] Evaluate [Coefficient Power Rule]:                                                   \displaystyle  \lim_{n \to \infty} \frac{8n^4 - 2n^3 + 19n}{6 + 3n^4} = \frac{8}{3}

∴ Because  \displaystyle  \lim_{n \to \infty} \frac{a_n}{b_n} \neq 0  and the sum  \displaystyle \sum^{\infty}_{n = 19} a_n  diverges by DCT,  \displaystyle \sum^{\infty}_{n = 19} \frac{8n^3 - 2n^2 + 19}{6 + 3n^4}   also diverges by LCT.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Convergence Tests (BC Only)

Book: College Calculus 10e

4 0
3 years ago
Given that ∠2 ≅ ∠10. Which statement is true?
Stolb23 [73]

Answer:

C) allb; by the converse alternate interior angels theorem

8 0
3 years ago
Other questions:
  • Plzzz answer !!!! Answer ASAP plz , would appreciate that
    6·1 answer
  • What number is 30% of 150
    15·2 answers
  • If the sales revenue is $150,000 and the margin of safety is $30,000, then the break even sales will be
    11·1 answer
  • Calculator question.
    5·1 answer
  • Given the pre-image point A (4,-9) and it's image point A' (12, -27), determine the scale factor
    6·1 answer
  • HELP ASAP. MARK BRAINLIEST. 10-20 POINTS​
    14·1 answer
  • Which shape does the intersection of the horizontal plane with a prism look like
    7·1 answer
  • May someone explain what’s sample space is and how to do it? I don’t think my teacher explained it good.
    8·2 answers
  • Consider −75/3. Which TWO statements are correct?
    10·2 answers
  • A farmer grows a particular plant that has a gene that can be manipulated to control the age t at which the plant matures. The n
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!