Answer:
B. <em>There is a 90% chance that the true value of the population proportion will fall between the lower bound and the upper bound. </em>
Step-by-step explanation:
A. <em>One has 90% confidence that the sample proportion is equal to the population proportion. </em>
Confidence interval gives an interval estimate, not an equality
B. <em>There is a 90% chance that the true value of the population proportion will fall between the lower bound and the upper bound. </em>
<em>Ture. </em>
<em>C.</em><em> One has 90% confidence that the interval from the lower bound to the upper bound actually does contain the true value of the population proportion. </em>
Also true but <em>One has 90% confidence is not good interpretation. </em>
<em>D</em><em>. 90% of sample proportions will fall between the lower bound and the upper bound.</em>
<em>Lower bound and upper bound is given to estimate population proportion. </em>
Answer:
Step-by-step explanation:
First confirm that x = 1 is one of the zeros.
f(1) = 2(1)^3 - 14(1)^2 + 38(1) - 26
f(1) = 2 - 14 + 38 - 26
f(1) = -12 + 38 = + 26
f(1) = 26 - 26
f(1) = 0
=========================
next perform a long division
x -1 || 2x^3 - 14x^2 + 38x - 26 || 2x^2 - 12x + 26
2x^3 - 2x^2
===========
-12x^2 + 28x
-12x^2 +12x
==========
26x -26
26x - 26
========
0
Now you can factor 2x^2 - 12x + 26
2(x^2 - 6x + 13)
The discriminate of the quadratic is negative. (36 - 4*1*13) = - 16
So you are going to get a complex result.
x = -(-6) +/- sqrt(-16)
=============
2
x = 3 +/- 2i
f(x) = 2*(x - 1)*(x - 3 + 2i)*(x - 3 - 2i)
The zeros are
1
3 +/- 2i
Answer:
Answer is a
Step-by-step explanation:
Answer:
Step-by-step explanation:
I think the answer C x=42 y=30, correct me if i'm wrong
Let us add consecutive odd numbers and try to find any relationship.
1. 1
2. 1+3 = 4 ( square of 2 i.e
)
3. 1+3+5 = 9 (
)
4. 1+3+5+7 = 16 (
)
5. 1+3+5+7+9 = 25 (
)
6. 1+3+5+7+9+11 = 36 (
)
7. 1+3+5+7+9+11+13 = 49 (
)
If we notice, the sum of the consecutive odd integers in each case is equal to the square of the place where it lies. For example, the sum of numbers in seventh place is equal to
. The sum of the numbers in the fifth line is equal to
.