Answer:
Only option B is correct, i.e. all real values of x except x = 2.
Step-by-step explanation:
Given the functions are C(x) = 5/(x-2) and D(x) = (x+3)
Finding (C·D)(x) :-
(C·D)(x) = C(x) * D(x)
(C·D)(x) = 5/(x-2) * (x+3)
(C·D)(x) = 5(x+3) / (x-2)
(C·D)(x) = (5x+15) / (x-2)
Let y(x) = (C·D)(x) = (5x+15) / (x-2)
According to definition of functions, the rational functions are defined for all Real values except the one at which denominator is zero.
It means domain will be all Real values except (x-2)≠0 or x≠2.
Hence, only option B is correct, i.e. all real values of x except x = 2.
Answer:
both items are $3 each
Step-by-step explanation:
amos: luvnonxistent
Answer:
The probability that the sample will contain exactly 0 nonconforming units is P=0.25.
The probability that the sample will contain exactly 1 nonconforming units is P=0.51.
.
Step-by-step explanation:
We have a sample of size n=4, taken out of a lot of N=12 units, where K=3 are non-conforming units.
We can write the probability mass function as:

where k is the number of non-conforming units on the sample of n=4.
We can calculate the probability of getting no non-conforming units (k=0) as:

We can calculate the probability of getting one non-conforming units (k=1) as:
