Answer:
x=4.875
y=-0.25
Step-by-step explanation:
4x – 2y = 10
2x-y=10
y=2x-10
4x + 6y = 18
2x+3(2x-10)=9
8x=39
x=4.875
y=2(4.875)-10
y=-0.25
Answer:
The price of a senior ticket is $12.
Step-by-step explanation:
Given:
Mr. Smith purchased 8 senior tickets and 5 child tickets for $136. Mr. Jackson purchased 4 senior tickets and 6 child tickets for $96.
Now, to get what is the price of a senior ticket.
Let the senior ticket be
and the child ticket be
:
So, according to question
.........(1)
...........(2)
Now, we have system of equations:
Multiplying the equation (2) by -2 we get:
.......(3)
Now, adding the equation (3) and (1) the variables and the numbers:


Dividing both sides by -7 we get:

Putting the value of y in equation (2) we get:


On solving the equation we get:
.
Therefore, the price of a senior ticket is $12.
That is the Distributive property of equality
A
Add both
3x²-5x+2+5x²-2x-6
8x²-7x-4
Mark brainliest please
Understanding the Absolute Value.
First, know what the absolute value is.
The absolute value is the value that determines how far the value is from 0.
For example, The absolute value of -5 is far from 0 5 units. Therefore the absolute value of -5 equals 5.
Basic Absolute Value Defines
| a | = a
- | a | = -a
| - a | = a
Back to the question. To evaluate those expressions, we use the defines of absolute value.
|-16| = 16
|-1| = 1
16-(1)
Then remove the brackets. 16 - 1 = 15
Therefore, the answer is 15.
<em>The</em><em> </em><em>answer</em><em> </em><em>above</em><em> </em><em>is</em><em> </em><em>when</em><em> </em><em>being</em><em> </em><em>subtracted</em><em> </em><em>and</em><em> </em><em>evaluated</em><em> </em><em>from</em><em> </em><em>both</em><em> </em><em>16</em><em>-</em><em>1</em>
<em>Evaluating</em><em> </em><em>for</em><em> </em><em>each</em><em> </em><em>expressions</em><em> </em><em>would</em><em> </em><em>be</em>
<em>|</em><em>-</em><em>16</em><em>|</em><em> </em><em>=</em><em> </em><em>16</em>
<em>-</em><em>|</em><em>-</em><em>1</em><em>|</em><em> </em><em>=</em><em> </em><em>-</em><em>1</em>