Answer:
∴The eigen values are -1,1.
The eigen vector for 1 is
.
The eigen vector for
= - 1 is
.
Step-by-step explanation:
Given matrix is
![A=\left[\begin{array}{cc}0&1\\1&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0%261%5C%5C1%260%5Cend%7Barray%7D%5Cright%5D)
To find the eigen values of the given matrix, we set







∴The eigen values are -1,1.
For 
Let the eigen vector for
is
![v_1=\left[\begin{array}{c}x_1\\x_2\end{array}\right]](https://tex.z-dn.net/?f=v_1%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%5C%5Cx_2%5Cend%7Barray%7D%5Cright%5D)
∴
![\left[\begin{array}{cc} 1&1\\1&1\end{array}\right] \left[\begin{array}{c}x_1\\x_2\end{array}\right]=O](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%201%261%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%5C%5Cx_2%5Cend%7Barray%7D%5Cright%5D%3DO)
![\Rightarrow \left[\begin{array}{c}x_1+x_2\\x_1+x_2\end{array}\right]=O](https://tex.z-dn.net/?f=%5CRightarrow%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_1%2Bx_2%5C%5Cx_1%2Bx_2%5Cend%7Barray%7D%5Cright%5D%3DO)


let

The eigen vector for 1 is
.
For 
Let the eigen vector for
is
![v_2=\left[\begin{array}{c}x_3\\x_4\end{array}\right]](https://tex.z-dn.net/?f=v_2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_3%5C%5Cx_4%5Cend%7Barray%7D%5Cright%5D)
∴
![\left[\begin{array}{cc} -1&1\\1&-1\end{array}\right] \left[\begin{array}{c}x_3\\x_4\end{array}\right]=O](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%20-1%261%5C%5C1%26-1%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx_3%5C%5Cx_4%5Cend%7Barray%7D%5Cright%5D%3DO)
![\Rightarrow \left[\begin{array}{c}-x_3+x_4\\x_3-x_4\end{array}\right]=O](https://tex.z-dn.net/?f=%5CRightarrow%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-x_3%2Bx_4%5C%5Cx_3-x_4%5Cend%7Barray%7D%5Cright%5D%3DO)

and

From the above equations, we get

Let 
Then, 
The eigen vector for
= - 1 is
.