1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
evablogger [386]
3 years ago
9

The AAA system contains 3 independent components in parallel, each with probability of failure 0.4. Find the expected number of

systems inspected until the first failed unit.
Mathematics
1 answer:
Gre4nikov [31]3 years ago
8 0

Answer:

Step-by-step explanation:

For each component, there are only two possible outcomes. Either it fails, or it does not. The components are independent. We want to know how many outcomes until r failures. The expected value is given by

E = \frac{r}{p}

In which r is the number of failures we want and p is the probability of a failure.

In this problem, we have that:

r = 1 because we want the first failed unit.

p = 0.4[\tex]So[tex]E = \frac{r}{p} = \frac{1}{0.4} = 2.5

The expected number of systems inspected until the first failed unit is 2.5

You might be interested in
How do i write 5,972,000,000,000,000,000,000,000kg in Scientific Notation
never [62]
In order to write this in scientific notation, we must move the decimal from the beginning all the way to between the 5 and the 9
Note: you can move the decimal anywhere you want but typically scientific notation will have the decimal in between the first and second digit.

Since we move the decimal 24 digits to the right, our answer will be

5.972 * 10^24
or
5.972E24

Hope this helps!!
8 0
3 years ago
Read 2 more answers
Many companies use a quality control technique called acceptance sampling to monitor incoming shipments of parts, raw materials,
blondinia [14]

Answer:

A. 0.9510

B. 0.0480

C. 0.0490

D. No, I would not feel comfortable accepting the shipment if one item was found defective, because the probability is quite small to obtain 1 or more defective items.

8 0
3 years ago
Compare and Contrast: Two equations are listed below. Solve each equation and compare the solutions. Choose the statement that i
Alex Ar [27]
No equations are listed
4 0
3 years ago
I need help with algebra 2 pleasee
Aleonysh [2.5K]

Answer:

x=\pm \sqrt{21}/7

Step-by-step explanation:

We can add 9 to both sides of the equation to get 21x^2=9.

We can divide both sides of the equation by 21 to get x^2=9/21.

We take the square root of both sides of the equation to get x=\pm \sqrt{9/21}.

However, that isn't in the form we need.

We know that \sqrt{9/21}=\sqrt{9}/\sqrt{21}=3/\sqrt{21}=3\sqrt{21}/(\sqrt{21}*\sqrt{21})=3\sqrt{21}/21=\sqrt{21}/7

so the answer is really x=\pm \sqrt{21}/7 and we're done!

5 0
3 years ago
Tyson has 1/2 pound of raisins to divide equally into 7 different bags what fraction of pound will be in each nah?
Anna007 [38]
14 pounds
7 x 1/2= (7 x 2) over 1
14/1 = 14

7 0
3 years ago
Read 2 more answers
Other questions:
  • FIRST ONE TO TELL ME THE ANSWER GETS BRAINIEST IT IS A MATH WORD
    15·1 answer
  • What number is 24% of 25
    13·2 answers
  • You can access your funds easier if your account has _________ liquidity.
    12·2 answers
  • sin alpha = 7/25, alpha lies in quadrant ii, and cos beta = 2/5, beta lies in quadrant i. find cos(alpha-beta).
    14·1 answer
  • 6 5/6 -2 1/4 as a mixed number in simplest form
    11·1 answer
  • Ms. Bobb needs to order more notebooks. Office Max charges $42 for 12 notebooks. Staples charges $60 for 15 notebooks. Which sto
    9·1 answer
  • The constant value which is multiplied by each term in a geometric sequence to obtain the next term.
    5·2 answers
  • With a slope of m = -2 and a point being (5,-2) what’s the Y-intercept?
    11·1 answer
  • The sum of two numbers is 5. The difference of two numbers is -1. Find the numbers
    7·2 answers
  • Twin brothers, Kenny and Isaiah, live in Small Town, USA where it snows an
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!