Answer: 35 inches.
Step-by-step explanation:
We know that:
hypotenuse = 5*y in
cathetus 1 = (x + 8) in
cathetus 2 = (x + 3) in
The perimeter of the triangle is 76 inches, then:
5*y + (x + 8) + (x + 3) = 76
5*y + 2*x + 13 = 76
We also know that the length of the hypotenuse minus the length of the shorter leg is 17 in.
The shorter leg is x + 3, then:
5*y - (x + 3) = 17
Then we have the equations:
5*y + 2*x + 11 = 76
5*y - (x + 3) = 17
With only these two we can solve the system, first we need to isolate one of the variables in one of the equations, i will isolate x in the second equation.
x = 5*y - 3 - 17 = 5*y - 20
x = 5*y - 20
Now we can replace this in the other equation, we get:
5*y + 2*x + 11 = 76
5*y + 2*(5*y - 20) + 11 = 76
15*y - 40 + 13 = 76
15*y - 29 = 76
15*y = 76 + 29 = 105
and remember that the hypotenuse is equal to 5*y, then we want to get:
3*(5*y) = 105
5*y = 105/3 = 35
5*y = 35
Then te length of the hypotenuse is 35 inches.
Answer:
The 1st,Thrid, Fifth Option
Step-by-step explanation:
The first option is true. We can move the orginal square root function to get g(x).
The second option is false. Function g(x) which equals

Domain is all real numbers greater than or equal to 3.
The third option is true. Since minimum point we can get is 0 in a square root function. We have a vertical shift so our new minimum point is

We can take the sqr root of 0 so
So all real numbers that are greater than or equal to -1 is true.
The fourth option is false, we need to add 3 instead of subtract 3.
The fifth option is true, we can do that to get back to our original function
Answer:
Move 6 to the left of f. 6f
Using the recursive function given, it is found that f(5) = 6600.
The function given is:


To find f(5), we keep applying the function until
, hence:
f(2) is f(1) subtracted by 400

f(3) is f(2) subtracted by 400

f(4) is f(3) subtracted by 400

f(5) is f(4) subtracted by 400

Hence, the result is f(5) = 6600.
A similar problem is given at brainly.com/question/21245344
Answer:
a negivet 2
Step-by-step explanation: