Answer:
271,403 is rounded to 270,000 because the 1403 before it is less than 5000, 4 and below drop it down, 5 or more bump it up.
Step-by-step explanation:
Answer:
Step-by-step explanation:
To round 4.9 to nearest tenth means to round the numbers so you only have one digit in the fractional part. 4.9 already has only one digit in the fractional part. Thus, 4.9 is already rounded as much as possible to the nearest tenth and the answer is: 4.9
Answer:
{x}^{4}+4{x}^{3}y+6{x}^{2}{y}^{2}+4x{y}^{3}+{y}^{4}x
4
+4x
3
y+6x
2
y
2
+4xy
3
+y
4
Step-by-step explanation:
1 Use Square of Sum: {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}(a+b)
2
=a
2
+2ab+b
2
.
({x}^{2}+2xy+{y}^{2})({x}^{2}+2xy+{y}^{2})(x
2
+2xy+y
2
)(x
2
+2xy+y
2
)
2 Expand by distributing sum groups.
{x}^{2}({x}^{2}+2xy+{y}^{2})+2xy({x}^{2}+2xy+{y}^{2})+{y}^{2}({x}^{2}+2xy+{y}^{2})x
2
(x
2
+2xy+y
2
)+2xy(x
2
+2xy+y
2
)+y
2
(x
2
+2xy+y
2
)
3 Expand by distributing terms.
{x}^{4}+2{x}^{3}y+{x}^{2}{y}^{2}+2xy({x}^{2}+2xy+{y}^{2})+{y}^{2}({x}^{2}+2xy+{y}^{2})x
4
+2x
3
y+x
2
y
2
+2xy(x
2
+2xy+y
2
)+y
2
(x
2
+2xy+y
2
)
4 Expand by distributing terms.
{x}^{4}+2{x}^{3}y+{x}^{2}{y}^{2}+2{x}^{3}y+4{x}^{2}{y}^{2}+2x{y}^{3}+{y}^{2}({x}^{2}+2xy+{y}^{2})x
4
+2x
3
y+x
2
y
2
+2x
3
y+4x
2
y
2
+2xy
3
+y
2
(x
2
+2xy+y
2
)
5 Expand by distributing terms.
{x}^{4}+2{x}^{3}y+{x}^{2}{y}^{2}+2{x}^{3}y+4{x}^{2}{y}^{2}+2x{y}^{3}+{y}^{2}{x}^{2}+2{y}^{3}x+{y}^{4}x
4
+2x
3
y+x
2
y
2
+2x
3
y+4x
2
y
2
+2xy
3
+y
2
x
2
+2y
3
x+y
4
6 Collect like terms.
{x}^{4}+(2{x}^{3}y+2{x}^{3}y)+({x}^{2}{y}^{2}+4{x}^{2}{y}^{2}+{x}^{2}{y}^{2})+(2x{y}^{3}+2x{y}^{3})+{y}^{4}x
4
+(2x
3
y+2x
3
y)+(x
2
y
2
+4x
2
y
2
+x
2
y
2
)+(2xy
3
+2xy
3
)+y
4
7 Simplify.
{x}^{4}+4{x}^{3}y+6{x}^{2}{y}^{2}+4x{y}^{3}+{y}^{4}x
4
+4x
3
y+6x
2
y
2
+4xy
3
+y
4
2/3, since those numbers can be divided by 14.
Answer:
y = 9 + 19x
Step-by-step explanation:
To find the equation matching a set of data, you simply try a few values for x and see if by solving that side of the equation you get the value of y. If you do, you found your equation.
You have a big advantage here... since you have the value of y when x = 0.
When x = 0, y = 9, that's a very important data to have to simplify your research.
Let's try the value of 0 for x in each of the given equations:
y = 18 + 10 (0) = 18 --- NO
y = 9 + 19 (0) = 9 --- YES! We can confirm with another value of x:
y = 9 + 19 (1) = 28 --- YES! Confirmed!
y = 9 + 19x is your answer!