What is the median of the data set? <br>
{10, 15, 14, 14, 10, 10, 8, 18, 11, 12, 17, 16}
Alexus [3.1K]
The median of a data set is the 'middle number'. You can find the median by listing the given numbers from least to greatest (left to right) and finding the middle number.
8, 10, 10, 10, 11, 12, 14, 14, 15, 16, 17, 18
Cross one out on each side before getting to your last number that should be in the middle.
The middle numbers are: 12 and 14. If it was only one number, we could already have the answer, but since it is two numbers in the middle, we need to add them up and divide by 2.
12 + 14 = 26
26 ÷ 2 = 13
So, the median of the data set is: 13.
Answer:
200
Step-by-step explanation:
Substitute 15 for y




Answer:
Since the calculated value of z= -1.496 does not fall in the critical region z < -1.645 we conclude that the new program is effective. We fail to reject the null hypothesis .
Step-by-step explanation:
The sample proportion is p2= 7/27= 0.259
and q2= 0.74
The sample size = n= 27
The population proportion = p1= 0.4
q1= 0.6
We formulate the null and alternate hypotheses that the new program is effective
H0: p2> p1 vs Ha: p2 ≤ p1
The test statistic is
z= p2- p1/√ p1q1/n
z= 0.259-0.4/ √0.4*0.6/27
z= -0.141/0.09428
z= -1.496
The significance level ∝ is 0.05
The critical region for one tailed test is z ≤ ± 1.645
Since the calculated value of z= -1.496 does not fall in the critical region z < -1.645 we conclude that the new program is effective. We fail to reject the null hypothesis .
The first one is C and the second one is B
The answer is <span>√x + √y = √c </span>
<span>=> 1/(2√x) + 1/(2√y) dy/dx = 0 </span>
<span>=> dy/dx = - √y/√x </span>
<span>Let (x', y') be any point on the curve </span>
<span>=> equation of the tangent at that point is </span>
<span>y - y' = - (√y'/√x') (x - x') </span>
<span>x-intercept of this tangent is obtained by plugging y = 0 </span>
<span>=> 0 - y' = - (√y'/√x') (x - x') </span>
<span>=> x = √(x'y') + x' </span>
<span>y-intercept of the tangent is obtained by plugging x = 0 </span>
<span>=> y - y' = - (√y'/√x') (0 - x') </span>
<span>=> y = y' + √(x'y') </span>
<span>Sum of the x and y intercepts </span>
<span>= √(x'y') + x' + y' + √(x'y') </span>
<span>= (√x' + √y')^2 </span>
<span>= (√c)^2 (because (x', y') is on the curve => √x' + √y' = √c) </span>
<span>= c. hope this helps :D</span>