The function f(x) = x2 is reflected across the x-axis and a stretch factor of 4 is applied to create a second function, g(x). Wh ich of the following statements about the vertices of f(x) and g(x) is true? The vertex of g(x) is the same as the vertex of f(x).
The vertex of g(x) is 4 units above the vertex of f(x).
The vertex of g(x) is 4 units to the left of the vertex of f(x).
The vertex of g(x) is 4 units below the vertex of f(x).
The vertex of g(x) is 4 units to the right of the vertex of f(x).
1 answer:
Well, if we see the graph of x^2 the vertex is (0,0) if we reflect it acrosss the x axis, teh vertex is still (0,0) verteical strech doesn't change the vertex vertex of g(x) is same as f(x) first answer
You might be interested in
Answer:
uh
Step-by-step explanation:
cant see the picture
f
18.90? I believe would be the answer . Let's see if someone else responds
43.0810 Since the hundred thousandths is a 1 which is less than a 5, you have to round down.
<h2>this is a PICTURE </h2><h3>i HOPE IT'S HELP </h3>