I'll do Problem 8 to get you started
a = 4 and c = 7 are the two given sides
Use these values in the pythagorean theorem to find side b

With respect to reference angle A, we have:
- opposite side = a = 4
- adjacent side = b =

- hypotenuse = c = 7
Now let's compute the 6 trig ratios for the angle A.
We'll start with the sine ratio which is opposite over hypotenuse.

Then cosine which is adjacent over hypotenuse

Tangent is the ratio of opposite over adjacent

Rationalizing the denominator may be optional, so I would ask your teacher for clarification.
So far we've taken care of 3 trig functions. The remaining 3 are reciprocals of the ones mentioned so far.
- cosecant, abbreviated as csc, is the reciprocal of sine
- secant, abbreviated as sec, is the reciprocal of cosine
- cotangent, abbreviated as cot, is the reciprocal of tangent
So we'll flip the fraction of each like so:

------------------------------------------------------
Summary:
The missing side is 
The 6 trig functions have these results

Rationalizing the denominator may be optional, but I would ask your teacher to be sure.
Hello!
To find the area, you take one side, (16) and multiply it by that number..
So, 16 * 16 = 256.
The area of a square with 16in sides is 256.
Hope this helps! ☺♥
Complete Question:
A population proportion is 0.4. A sample of size 200 will be taken and the sample proportion p will be used to estimate the population proportion. Use z- table Round your answers to four decimal places. Do not round intermediate calculations. a. What is the probability that the sample proportion will be within ±0.03 of the population proportion? b. What is the probability that the sample proportion will be within ±0.08 of the population proportion?
Answer:
A) 0.61351
Step-by-step explanation:
Sample proportion = 0.4
Sample population = 200
A.) proprobaility that sample proportion 'p' is within ±0.03 of population proportion
Statistically:
P(0.4-0.03<p<0.4+0.03)
P[((0.4-0.03)-0.4)/√((0.4)(.6))/200 < z < ((0.4+0.03)-0.4)/√((0.4)(.6))/200
P[-0.03/0.0346410 < z < 0.03/0.0346410
P(−0.866025 < z < 0.866025)
P(z < - 0.8660) - P(z < 0.8660)
0.80675 - 0.19325
= 0.61351
B) proprobaility that sample proportion 'p' is within ±0.08 of population proportion
Statistically:
P(0.4-0.08<p<0.4+0.08)
P[((0.4-0.08)-0.4)/√((0.4)(.6))/200 < z < ((0.4+0.08)-0.4)/√((0.4)(.6))/200
P[-0.08/0.0346410 < z < 0.08/0.0346410
P(−2.3094 < z < 2.3094)
P(z < -2.3094 ) - P(z < 2.3094)
0.98954 - 0.010461
= 0.97908
(5.5x + 6.2y) + (4.3x + 8.3z) + (1.6z - 5.ly)
Combine Like Terms
9.8x + 1.1y + 14.5z
So the perimeter is
9.8x + 1.1y + 14.5z