1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hoa [83]
4 years ago
15

8.6+23.4+1.4. Using mental math

Mathematics
1 answer:
horrorfan [7]4 years ago
8 0
8.6+23.4=32
32+1.4=33.4
You might be interested in
Question 2 (2 points)
hoa [83]

Answer:

4) The limit does not exist.

General Formulas and Concepts:

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle \lim_{x \to c^+} f(x)
  • Left-Side Limit:                                                                                               \displaystyle \lim_{x \to c^-} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Step-by-step explanation:

*Note:

For a limit to exist, the right-side and left-side limits must be equal to each other.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f(x) = \left\{\begin{array}{ccc}5 - x ,\ x < 5\\8 ,\ x = 5\\x + 3 ,\ x > 5\end{array}

<u>Step 2: Find Left-Side Limit</u>

  1. Substitute in function [Left-Side Limit]:                                                       \displaystyle \lim_{x \to 5^-} 5 - x
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:                          \displaystyle \lim_{x \to 5^-} 5 - x = 5- 5 = 0

<u>Step 2: Find Left-Side Limit</u>

  1. Substitute in function [Right-Side Limit]:                                                     \displaystyle \lim_{x \to 5^+} x + 3
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \lim_{x \to 5^+} x + 3 = 5 + 3 = 8

∴ since  \displaystyle \lim_{x \to c^+} f(x) \neq \lim_{x \to c^-} f(x)  ,  \displaystyle  \lim_{x \to 5} f(x) = \text{DNE}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

5 0
3 years ago
1) Find the GCF for 45a^3b^2 and 15ab
WINSTONCH [101]

We want to find the greatest common factor of two given expressions.

The GCF is 15*a*b.

The two expressions are:

45*a^3*b^2 and 15*a*b

To find the greatest common factor, we can rewrite the first expression to get:

45*a^3*b^2 = (3*15)*(a^2*a)*(b*b)

Now remember that we can perform a multiplication in any order we want, so we can rearrange the factors to write this as:

(3*15)*(a^2*a)*(b*b) = (15*a*b)*(3*a^2*b)

Then we have:

45*a^3*b^2 =  (15*a*b)*(3*a^2*b)

So we can see that 15*a*b is a factor of 45*a^3*b^2, then the GCF between 15*a*b and 45*a^3*b^2 is just 15*a*b.

If you want to learn more, you can read:

brainly.com/question/1986258

5 0
3 years ago
Solving Equations: <br><br> Half of x is -14
8090 [49]

Answer:

X=-28

Step-by-step explanation:

-14*2=-28

7 0
4 years ago
Read 2 more answers
A factory is to be built on a lot measuring 210 ft by 280 ft. A local building code specifies that a lawn of uniform width and e
Tresset [83]

Answer:

Width of lawn = 35 ft

Dimensions of factory = length: 210 ft, width: 140 ft

Step-by-step explanation:

The total area of the lot can be calculated as:

A_{lot} = 210 * 280\\A_{lot} = 58800 ft^{2}

Since, the area of factory should be equal to area of lawn:

A_{lot} = A_{factory} + A_{lawn}\\58800 = 2 A_{factory or lawn}\\\\A_{factory or lawn} = \frac{58800}{2}\\A_{factory or lawn} = 29400 ft^{2}

Now, let 'x' be the width of lawn, the dimensions of factory can be written as:

(210-2x)\\(280-2x)\\

Since, area is equal to length x width:

(210-2x)*(280-2x) = 29400\\Simplifying:\\210*280 - 210*2x - 2x*280 + 4x^{2} = 29400\\58800 - 420x - 560x +4x^{2} = 29400\\4x^{2}  - 980x +58800 = 29400\\4x^{2} - 980x + 29400 = 0\\

Divide whole equation by 4,

x^{2} - 245 + 7350 = 0\\

Solving above quadratic equation, we get,

x = 210\\x = 35\\

x = 35 seems realistic width of the lawn.

Now, finding the dimension of factory:

(210-2x) = 210 - 2(35) = 140 ft\\(280-2x) = 280 - 2(35) = 210ft

We can also reconfirm the area of factory by multiplying the above two lengths:

140 * 210 = 29400 ft

8 0
3 years ago
at a farm the ratio of the number of hens to the number of ducks is 3:5 there are 125 ducks at the farm how many hens are there
Readme [11.4K]

3 : 5

x : 125

125 ÷ 5 = 25

25 × 3 = 75

no. of hens = 75

8 0
3 years ago
Read 2 more answers
Other questions:
  • Determine if <img src="https://tex.z-dn.net/?f=%20t%5E%7B2%7D%20" id="TexFormula1" title=" t^{2} " alt=" t^{2} " align="absmiddl
    15·2 answers
  • BRAINLIEST AND 20 POINTS
    8·2 answers
  • Hello, how can I find the slope of 4y+6x=2?
    15·2 answers
  • What is the equation of the line?
    12·1 answer
  • Factor the trinomial.<br> 2x2 + 7x + 5
    14·2 answers
  • What is the value of pi to 10 decimal places
    12·1 answer
  • 2 A cafe sells cakes and scones.
    5·1 answer
  • If P (A) =24/33<br> what is the value of P (A')?
    5·1 answer
  • 4e(e+2) Please can someone help me one this question?
    6·2 answers
  • -2/3 ( -12x + 15) = 12
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!