Answer:
false
Explanation:
every object will always have the force of gravity acting upon it.
Answer:
All the answers are solved and explained below.
Explanation:
Note: This questions lacks the initial and most necessary data to answer these following questions. I have found a related question. I will be considering that question to carry out the answers.
Question: A car with a mass of 1000 kg is at rest at a spotlight. when the light turns green, it is pushed by a net force of 2000 N for 10 s. (This was the information missing in this question).
Data Given:
m = 1000 kg
F = 2000N
t = 10s
Q1 Solution:
Acceleration = a = ?
F = ma
a = F/m
a = 2000/ 1000
a = 2 
Q2: Solution:
Change in velocity = Δv = ?
acceleration = change in velocity / time
a = Δv/t
Δv = axt
Δv = 2 x 10
Δv = 20 m/s
Q3: Solution:
Impulse = I = ?
Impulse = Force x time
I = 2000 x 10
I = 20000 Ns
Q4: Solution:
Change in Momentum = Δp = ?
Δp = mΔv
Δp = 1000 x 20
Δp = 20000 Kgm/s
Q5: Solution:
Final velocity of the car at the end of 10 seconds = vf = ?
Δp = m x Δv
Δp = m x (vf-vi)
Δp = 1000 x (vf - 0 )
20000 = 1000 x vf
vf = 20000/1000
vf = 20 m/s
Q6: Solution:
Change in momentum the car experiences as it continues at this velocity?
Δp = ?
Δp = mΔv
Δp = m x (0)
Δp = 0
Q7: Solution:
Impulse = Change in momentum
Impulse = Δp
Implulse = 0
Q8: Solution:
Change in momentum = Δp = mΔv
Δp = m(vf-vi)
Δp = 1000 x (0-20)
Δp = -20000 kgm/s
Q9: Solution:
Impulse = Δp
Impulse = -20000 Ns
Q10: Solution:
Impulse = ?
Impulse = F x t
F = impulse/t
F = -20000/4s
F = -5000 N
Q11: Solution:
F = ma
a = ?
a = F/m
a = -5000/1000
a = -5
<span>Nothing, in terms of the chemistry.
The distance between the electrodes affects the electrical resistance very slightly. Increasing the distance increases the resistance and reduces the current slightly, which reduces slightly the amount of product.
For most practical applications, for electrolysis done in a beaker, varying the distance between the electrodes will make little difference.
Increasing the concentration of the electrolyte will increase the current flow because there are more charged particles to carry charge, and increase the product yield.</span>
Acids are danger so stay away
Answer:
Point A is at higher potential than point B
Explanation:
Electrons are negatively charged - this means that they are attracted by positive charges and repelled by negative charges.
This also means that they tend to move in a direction opposite to the electric field lines (because electric field lines point away from a positive charge and toward a negative charge). So, they also tend to move from a point at lower potential to a point at higher potential.
In this problem, the electrons flow from point B to point A: therefore, point A must have higher potential than point B.