1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRissso [65]
3 years ago
6

A train starts at rest in a station and accelerates at a constant 0.987 m/s2 for 182 seconds. Then the train decelerates at a co

nstant 0.321 m/s2 until it comes to a stop at the next station. Find the distance between the stations, in km.
Physics
1 answer:
algol [13]3 years ago
8 0

Answer:

\displaystyle X_T=66.6\ km

Explanation:

<u>Accelerated Motion </u>

When a body changes its speed at a constant rate, i.e. same changes take same times, then it has a constant acceleration. The acceleration can be positive or negative. In the first case, the speed increases, and in the second time, the speed lowers until it eventually stops. The equation for the speed vf at any time t is given by

\displaystyle V_f=V_o+a\ t

where a is the acceleration, and vo is the initial speed .

The train has two different types of motion. It first starts from rest and has a constant acceleration of 0.987 m/s^2 for 182 seconds. Then it brakes with a constant acceleration of -0.321 m/s^2 until it comes to a stop. We need to find the total distance traveled.

The equation for the distance is

\displaystyle X=V_o\ t+\frac{a\ t^2}{2}

Our data is

\displaystyle V_o=0,a=0.987m/s^2,\ t=182\ sec

Let's compute the first distance X1

\displaystyle X_1=0+\frac{0.987\times 182^2}{2}

\displaystyle X_1=16,346.7\ m

Now, we find the speed at the end of the first period of time

\displaystyle V_{f1}=0+0.987\times 182

\displaystyle V_{f1}=179.6\ m/s

That is the speed the train is at the moment it starts to brake. We need to compute the time needed to stop the train, that is, to make vf=0

\displaystyle V_o=179.6,a=-0.321\ m/s^2\ ,V_f=0

\displaystyle t=\frac{v_f-v_o}{a}=\frac{0-179.6}{-0.321}

\displaystyle t=559.5\ sec

Computing the second distance

\displaystyle X_2=179.6\times559.5\ \frac{-0.321\times 559.5^2}{2}

\displaystyle X_2=50,243.2\ m

The total distance is

\displaystyle X_t=x_1+x_2=16,346.7+50,243.2

\displaystyle X_t=66,589.9\ m

\displaystyle \boxed{X_T=66.6\ km}

You might be interested in
Explain why is it easy to slip on a floor that is wet
zmey [24]
The water creates less friction between your foot and the ground
6 0
3 years ago
Read 2 more answers
Monochromatic light of a given wavelength is incident on a metal surface. However, no photoelectrons are emitted. If electrons a
mrs_skeptik [129]

Answer:

Light of a shorter wavelength should be used.

Explanation:

This is studied in the phenomenon called photoelectric effect, in which light is able to release electrons from a metal, said electrons are called photoelectrons .

The experiments that have been carried out show that <u>increasing  or decreasing the intensity of the light will not cause the photoelectrons to be emitted</u>, what will cause the photoelectrons to be emitted is to increase the frequency of the incident light.

And a higher frequency corresponds to a shorter wavelength according to the equation:

f=\frac{c}{\lambda}

(where f is frequency, c the speed of light, and \lambda the wavelength)

So the answer is that the wavelength of the light must be shortened to cause the emission of electrones.

4 0
4 years ago
A transformer has 18 turns of wire in its primary coil and 90 turns in its secondary coil. An alternating voltage with an effect
Fantom [35]

Answer:

I_s=5.8A

Explanation:

Not considering any type of losses in the transformer, the input power in the primary is equal to the output power in the secondary:

P_p=P_s

So:

V_p*I_p=V_s*I_s

Where:

V_p=Voltage\hspace{3}in\hspace{3}the\hspace{3}primary\hspace{3}coil\\V_s=Voltage\hspace{3}in\hspace{3}the\hspace{3}secondary\hspace{3}coil\\I_p=Current\hspace{3}in\hspace{3}the\hspace{3}primary\hspace{3}coil\\I_s=Current\hspace{3}in\hspace{3}the\hspace{3}secondary\hspace{3}coil

Solving for I_s

I_s=\frac{V_p*I_p}{V_s}

Replacing the data provided:

I_s=\frac{110*29}{550} =5.8A

4 0
3 years ago
Which state(s) of matter is/are made up of atoms and molecules that have a comparatively high amount of kinetic energy, which al
Rom4ik [11]

Answer:

A. gas only

Explanation:

In a gas, the molecules are in continuous, random, straight-line motion.

The molecules are independent of one another i.e The forces of attraction (cohesive forces) and repulsion between the molecules are small and negligible,As such they possess greater kinetic energy which allows them to break the force of attraction between them

In liquid, the molecules have a less random pattern of motion and they can only slide past one another.

In solid, the motion are restricted to a small place as the molecules are not free to move about but merely vibrate about their lattice points.

7 0
3 years ago
The uniform slender bar AB has a mass of 6.4 kg and swings in a vertical plane about the pivot at A. If θ˙ = 2.7 rad/s when θ =
dolphi86 [110]

Answer:

F=√[(1.5(14.58L+11.96))² + (3.2(2.97L - 157.03) + 62.72)²]

Explanation:

Given data,

The mass of the bar AB, m = 6.4 kg

The angular velocity of the bar,  θ˙ = 2.7 rad/s

The angle of the bar at A, θ = 24°

Let the length of the bar be, L = l

The angular moment at point A is,

                        ∑ Mₐ = Iα

Where,     Mₐ - the moment about A

                 α  - angular acceleration

                 I - moment of inertia of the rod AB

                       -mg(\frac{lcos\theta}{2})=\frac{1}{3}(ml^{2})\alpha

                        \alpha=\frac{-3gcos\theta}{2l}

Let G be the center of gravity of the bar AB

The position vector at A with respect to the origin at G is,

                          \vec{r_{G}}=[\frac{lcos\theta}{2}\hat{i}-\frac{lcos\theta}{2}\hat{j}]

The acceleration at the center of the bar

                          \vec{a_{G}}=\vec{a_{a}}+\vec{\alpha}X\vec{r_{G}}-\omega^{2}\vec{r_{G}}

Since the point A is fixed, acceleration is 0

The acceleration with respect to the coordinate axes is,

                         (\vec{a_{G}})_{x}\hat{i}+(\vec{a_{G}})_{y}\hat{j}=0+(\frac{-3gcos\theta}{2l})\hat{k}\times[\frac{lcos\theta}{2}\hat{i}-\frac{lcos\theta}{2}\hat{j}]-\omega^{2}[\frac{lcos\theta}{2}\hat{i}-\frac{lcos\theta}{2}\hat{j}]

(\vec{a_{G}})_{x}\hat{i}+(\vec{a_{G}})_{y}\hat{j}=[-\frac{cos\theta(2l\omega^{2}+3gsin\theta)}{4}\hat{i}+(\frac{2l\omega^{2}sin\theta-3gcos^{2}\theta}{4})\hat{j}]

Comparing the coefficients of i

=-\frac{cos\theta(2l\omega^{2}+3gsin\theta)}{4}

Comparing coefficients of j

(\vec{a_{G}})_{y}=\frac{2l\omega^{2}sin\theta-3gcos^{2}\theta}{4}

Net force on x direction

F_{x}=(\vec{a_{G}})_{x}

substituting the values

F_{x}=1.5(14.58L+11.96)

Similarly net force on y direction

F_{y}=(\vec{a_{G}})_{y}+mg

               = 3.2(2.97L - 157.03) + 62.72

Where L is the length of the bar AB

Therefore the net force,

F=\sqrt{F_{x}^{2}+F_{y}^{2}}

F=√[(1.5(14.58L+11.96))² + (3.2(2.97L - 157.03) + 62.72)²]

Substituting the value of L gives the force at pin A

8 0
3 years ago
Other questions:
  • What type of charge does an electron have?
    10·2 answers
  • What is necessary for a substance to be a conductor of electricity?
    6·1 answer
  • What is the definition of the coefficient of kinetic friction?
    7·1 answer
  • Which of these is NOT a possible type of energy transformation?
    5·1 answer
  • Which of the following values has the greatest number of significant figures? Justify your answer?
    8·1 answer
  • Of the ball is
    9·1 answer
  • Is there a frame of reference one can go into that seems to eliminate gravity as Newton described it?
    5·1 answer
  • PLEASE HELP.
    11·1 answer
  • Do magnets have to touch each other for a magnetic field to be present?
    10·1 answer
  • Tarzan, whose mass is 103 kg, is hanging at rest from a tree limb. Then he lets go and falls to the ground. Just before he lets
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!