Answer:
The interest charged is $7.49.
After 29 days, Travis paid a total of $607.49
Step-by-step explanation:
Travis obtained a cash advance for $600.
The interest rate is 0.04305% per day.
The simple interest rate formula is given by:

Where <em>I</em> is the interest, <em>P</em> is the initial amount, <em>r</em> is the rate, and <em>t</em> is the time (in this case in days).
Our initial amount <em>P</em> is $600.
Our interest rate <em>r</em> is 0.04305% or (moving the decimal two places to the left) 0.0004305.
Since Travis repaid the loan after 29 days, our <em>t</em> is 29.
Hence, our interest is:

So, the interest charged is about $7.49.
So, after 29 days, Travis paid a total of the original $600 plus an interest of $7.49 for a total of $607.49
Assuming the first 5 terms are:
n = 0
n = 1
n = 2
n = 3
n = 4
a) 4n + 4
4(0) + 4 = 4
4(1) + 4 = 8
4(2) + 4 = 12
4(3) + 4 = 16
4(4) + 4 = 20
b) 8n + 3
8(0) + 3 = 3
8(1) + 3 = 11
8(2) + 3 = 19
8(3) + 3 = 27
8(4) + 3 = 35
c) 18 - 3n
18 - 3(0) = 18
18 - 3(1) = 15
18 - 3(2) = 12
18 - 3(3) = 9
18 - 3(4) = 6
1. vertical angle theorem and triangle angle sum theorem
2. The sum of the interior angles of a triangle = 180
so < x = 180 - (70 + 30) = 180 - 100 = 80
and < y is a vertical angle to < x...and vertical angles are equal..
so < y = 80
Complete Question
Evaluate the Fermi function for an energy kT above the Fermi energy. Find the temperature at which there is a 1% probability that a state, with an energy 0.5 eV above the Fermi energy, will be occupied by an electron.
Answer:
a
The Fermi function for the energy KT is 
b
The temperature is 
Step-by-step explanation:
From the question we are told that
The energy considered is 
Generally the Fermi function is mathematically represented as
![F(E_o) = \frac{1}{e^{\frac{[E_o - E_F]}{KT} } + 1 }](https://tex.z-dn.net/?f=F%28E_o%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5BE_o%20-%20E_F%5D%7D%7BKT%7D%20%7D%20%2B%201%20%7D)
Here K is the Boltzmann constant with value 
is the Fermi energy
is the initial energy level which is mathematically represented as

So
![F(E_o) = \frac{1}{e^{\frac{[[E_F + KT] - E_F]}{KT} } + 1}](https://tex.z-dn.net/?f=F%28E_o%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5B%5BE_F%20%2B%20KT%5D%20-%20E_F%5D%7D%7BKT%7D%20%7D%20%2B%201%7D)
=> 
=> 
=> 
Generally the probability that a state, with an energy 0.5 eV above the Fermi energy, will be occupied by an electron is mathematically represented by the Fermi function as
![F(E_k) = \frac{1}{e^{\frac{[E_k - E_F]}{KT_k} } + 1 } = 0.01](https://tex.z-dn.net/?f=F%28E_k%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5BE_k%20-%20E_F%5D%7D%7BKT_k%7D%20%7D%20%2B%201%20%7D%20%20%3D%200.01)
Here
is that energy level that is 0.5 ev above the Fermi energy 
=> ![F(E_k) = \frac{1}{e^{\frac{[[0.50 eV + E_F] - E_F]}{KT_k} } + 1 } = 0.01](https://tex.z-dn.net/?f=F%28E_k%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5B%5B0.50%20eV%20%2B%20E_F%5D%20-%20E_F%5D%7D%7BKT_k%7D%20%7D%20%2B%201%20%7D%20%20%3D%200.01)
=> ![\frac{1}{e^{\frac{0.50 eV ]}{KT_k} } + 1 } = 0.01](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D%20%2B%201%20%7D%20%20%3D%200.01)
=> ![1 = 0.01 * e^{\frac{0.50 eV ]}{KT_k} } + 0.01](https://tex.z-dn.net/?f=1%20%3D%200.01%20%2A%20e%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D%20%2B%200.01)
=> ![0.99 = 0.01 * e^{\frac{0.50 eV ]}{KT_k} }](https://tex.z-dn.net/?f=0.99%20%3D%200.01%20%2A%20e%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D)
=> ![e^{\frac{0.50 eV ]}{KT_k} } = 99](https://tex.z-dn.net/?f=e%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D%20%20%3D%2099)
Taking natural log of both sides
=> 
=> 
Note eV is electron volt and the equivalence in Joule is 
So

=> 
Answer:
12√5
Step-by-step explanation:
6√5 + 6√5 = (6 + 6) * √5 = 12 * √5 = 12√5.