Y=1/x is a reciprocal function & its shape is a special hyperbola with one branch located in the 1st Quadrant and the second in the 3dr Quadrant and both are symmetric about the origin O.
If a> 1 → y=a/x and the 2 branches are equally stretched upward & downward
about the center O.
If 0 < a < 1→y =a/x, the 2 branches are equally stretched downward and upward about the center O.
If a<0, then the 2 legs are in the 2nd and 4th Quadrant respectively
Answer:
4 3/4
Step-by-step explanation:
Answer:
True
Step-by-step explanation:
True.
Like the cubic term -3x^3 is negative, for small values of "x", the dependent variable "y" will rise. All this can be verified by looking at the graph.
Answer: the answer is c
Step-by-step explanation:
Answer:
![f(x)=\sqrt[3]{x-4} , g(x)=6x^{2}\textrm{ or }f(x)=\sqrt[3]{x},g(x)=6x^{2} -4](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx-4%7D%20%2C%20g%28x%29%3D6x%5E%7B2%7D%5Ctextrm%7B%20or%20%7Df%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%2Cg%28x%29%3D6x%5E%7B2%7D%20-4)
Step-by-step explanation:
Given:
The function, ![H(x)=\sqrt[3]{6x^{2}-4}](https://tex.z-dn.net/?f=H%28x%29%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D)
Solution 1:
Let ![f(x)=\sqrt[3]{x}](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D)
If
, then,
![\sqrt[3]{g(x)} =\sqrt[3]{6x^{2}-4}\\g(x)=6x^{2}-4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bg%28x%29%7D%20%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%5C%5Cg%28x%29%3D6x%5E%7B2%7D-4)
Solution 2:
Let
. Then,
![f(g(x))=H(x)=\sqrt[3]{6x^{2}-4}\\\sqrt[3]{g(x)-4}=\sqrt[3]{6x^{2}-4} \\g(x)-4=6x^{2}-4\\g(x)=6x^{2}](https://tex.z-dn.net/?f=f%28g%28x%29%29%3DH%28x%29%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%5C%5C%5Csqrt%5B3%5D%7Bg%28x%29-4%7D%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%20%5C%5Cg%28x%29-4%3D6x%5E%7B2%7D-4%5C%5Cg%28x%29%3D6x%5E%7B2%7D)
Similarly, there can be many solutions.