Answer:
is the same as
by co-function identities
Step-by-step explanation:
Remember that complementary angles add up to 90°. The angle that i s complementary to 63° is 27°.
Also recall the co-function identities:
- sin (90° – x) = cos x
- cos (90° – x) = sin x
This means that
.
(A) For x representing the cost of one of Tanya's items, her total purchase cost 5x. The cost of one of Tony's items is then (x-1.75) and the total of Tony's purchase is 6(x-1.75). The problem statement tells us these are equal values. Your equation is ...
... 5x = 6(x -1.75)
(B) Subtract 5x, simplify and add the opposite of the constant.
... 5x -5x = 6x -6·1.75 -5x
... 0 = x -10.50
... 10.50 = x
(C) 5x = 5·10.50 = 52.50
... 6(x -1.75) = 6·8.75 = 52.50 . . . . . the two purchases are the same value
(D) The individual cost of Tanya's iterms was $10.50. The individual cost of Tony's items was $8.75.
Answer:
nuber 1
Simplifying
3x + 2y = 35
Solving
3x + 2y = 35
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-2y' to each side of the equation.
3x + 2y + -2y = 35 + -2y
Combine like terms: 2y + -2y = 0
3x + 0 = 35 + -2y
3x = 35 + -2y
Divide each side by '3'.
x = 11.66666667 + -0.6666666667y
Simplifying
x = 11.66666667 + -0.6666666667y
Answer:
3(5x−11)
Step-by-step explanation:
32+15x−42
15x−33
=3(5x−11)
Si it is a linear eqaution