So I'm going to assume that this question is asking for <u>non extraneous solutions</u>, or solutions that are found in the equation <em>and</em> are valid solutions when plugged back into the equation. So firstly, subtract 2 on both sides of the equation:

Next, square both sides:

Next, subtract x and add 2 to both sides of the equation:

Now we are going to be factoring by grouping to find the solution(s). Firstly, what two terms have a product of 6x^2 and a sum of -5x? That would be -3x and -2x. Replace -5x with -2x - 3x:

Next, factor x^2 - 2x and -3x + 6 separately. Make sure that they have the same quantity on the inside of the parentheses:

Now you can rewrite the equation as 
Now, apply the Zero Product Property and solve for x as such:

Now, it may appear that the answer is C, however we need to plug the numbers back into the original equation to see if they are true as such:

Since both solutions hold true when x = 2 and x = 3, <u>your answer is C. x = 2 or x = 3.</u>
Answer:
It's different because the experiment is more accurate as it progresses.
Step-by-step explanation:
You'll notice that the higher the numbers get in the experiment the closer it gets to your solution. The theoretical probability of flipping a coin is about 50% heads and 50% tails, but it doesn't always seem like that in an experiment. The experimental probability from your experimentation so far would be 62% of heads and 38% of tails.
When x=-1:

Ok that gives us a little more information.
If we implicitly differentiate with respect to t, from the very start, then we can apply our product rule, ya?

The right side is zero, derivative of a constant is zero.
Where x' is dx/dt and y' is dy/dt.
From here, plug in all the stuff you know:
y' = -3
x = -1
y = 4
and solve for x'.
Hope that helps!
A number in the tens place 84