Answer:
\dfrac{sin\theta + cos\theta}{sin\theta-cos\theta}+\dfrac{sin\theta-cos\theta}{sin\theta+cos\theta}=\dfrac{2sec^2\theta}{tan^2\theta-1}
From Left side:
\dfrac{sin\theta + cos\theta}{sin\theta-cos\theta}\bigg(\dfrac{sin\theta+cos\theta}{sin\theta+cos\theta}\bigg)+\dfrac{sin\theta-cos\theta}{sin\theta+cos\theta}\bigg(\dfrac{sin\theta-cos\theta}{sin\theta-cos\theta}\bigg)
\dfrac{sin^2\theta+2cos\thetasin\theta+cos^2\theta}{sin^2\theta-cos^2\theta}+\dfrac{sin^2\theta-2cos\thetasin\theta+cos^2\theta}{sin^2\theta-cos^2\theta}
NOTE: sin²θ + cos²θ = 1
\dfrac{1 + 2cos\theta sin\theta}{sin^2\theta-cos^2\theta}+\dfrac{1-2cos\theta sin\theta}{sin^2\theta-cos^2\theta}
\dfrac{1 + 2cos\theta sin\theta+1-2cos\theta sin\theta}{sin^2\theta-cos^2\theta}
\dfrac{2}{sin^2\theta-cos^2\theta}
\dfrac{2}{\bigg(sin^2\theta-cos^2\theta\bigg)\bigg(\dfrac{cos^2\theta}{cos^2\theta}\bigg)}
\dfrac{2sec^2\theta}{\dfrac{sin^2\theta}{cos^2\theta}-\dfrac{cos^2\theta}{cos^2\theta}}
\dfrac{2sec^2\theta}{tan^2\theta-1}
Left side = Right side so proof is complete
Step-by-step explanation: