Answer:
6+4x-3z
Step-by-step explanation:
<u>-2</u>+6x+z-2x<u>+8</u>-4z
6<u>+6x</u>+z<u>-2x</u>-4z
6+4x<u>+z-4z</u>
6+4x-3z
Answer:
The parametrization, of the given curve is ![x = 10 cos(t) \ \ ,z = 10 sin(t)](https://tex.z-dn.net/?f=x%20%3D%2010%20cos%28t%29%20%5C%20%5C%20%2Cz%20%3D%2010%20sin%28t%29)
Step-by-step explanation:
From the question we are given the function
![x^2 + y^2 + z^2 = 125](https://tex.z-dn.net/?f=x%5E2%20%2B%20y%5E2%20%2B%20z%5E2%20%3D%20125)
At y= 5
![x^2 + 5^2 +z^2 =125](https://tex.z-dn.net/?f=x%5E2%20%2B%205%5E2%20%2Bz%5E2%20%3D125)
![x^2 + z^2 = 10^2](https://tex.z-dn.net/?f=x%5E2%20%2B%20z%5E2%20%3D%20%2010%5E2)
Converting the above to it polar equation we have
![x = 10 cos(t) \ \ ,z = 10 sin(t)](https://tex.z-dn.net/?f=x%20%3D%2010%20cos%28t%29%20%5C%20%5C%20%2Cz%20%3D%2010%20sin%28t%29)
Answer:
$4,800
Step-by-step explanation:
The maximum contribution for traditional IRA in 2019 = $6000
Given that;
karen has a salary of $33,000 and rental income of $33,000; then total income = $66,000
AGI phase-out range for traditional IRA contributions for a single taxpayer who is an active plan participant is $64,000 – $74,000.
PhaseOut can be calculated as: ![\frac{66,000-64000}{74,000-64,000} *6000](https://tex.z-dn.net/?f=%5Cfrac%7B66%2C000-64000%7D%7B74%2C000-64%2C000%7D%20%2A6000)
= ![\frac{2000}{10000} *6000](https://tex.z-dn.net/?f=%5Cfrac%7B2000%7D%7B10000%7D%20%2A6000)
= 0.2 * 6000
= 1200
Therefore, the maximum amount that Karen may deduct for contributions to her traditional IRA for 2019 = The maximum contribution for traditional IRA in 2019 - PhaseOut
= $6000 - $1,200
= $4,800
Answer:
![\frac{2}{9} x](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B9%7D%20x)
Step-by-step explanation:
To find slope using two points you need to find the difference in x and y. You use ![\frac{y_{2}-y_{1}}{x_{2}-x_{1} }](https://tex.z-dn.net/?f=%5Cfrac%7By_%7B2%7D-y_%7B1%7D%7D%7Bx_%7B2%7D-x_%7B1%7D%20%7D)
So, 2-0=2 and 5-(-4)=9. Therefore the slope is 2/9x