Answer:
a =
Step-by-step explanation:
Given:
f(x) = log(x)
and,
f(kaa) = kf(a)
now applying the given function, we get
⇒ log(kaa) = k × log(a)
or
⇒ log(ka²) = k × log(a)
Now, we know the property of the log function that
log(AB) = log(A) + log(B)
and,
log(Aᵇ) = b × log(A)
Thus,
⇒ log(k) + log(a²) = k × log(a) (using log(AB) = log(A) + log(B) )
or
⇒ log(k) + 2log(a) = k × log(a) (using log(Aᵇ) = b × log(A) )
or
⇒ k × log(a) - 2log(a) = log(k)
or
⇒ log(a) × (k - 2) = log(k)
or
⇒ log(a) = (k - 2)⁻¹ × log(k)
or
⇒ log(a) =
(using log(Aᵇ) = b × log(A) )
taking anti-log both sides
⇒ a =
Answer:
9
Step-by-step explanation:
Using the rules of logarithms
log
= nlogx
b = 1
Then

= 9
x
= 9
Answer:
E(X ¯)=210,000.
Step-by-step explanation:
A sampling distribution for samples of size n=49 from a population with means μ=210,000 and standard deviation σ=35,000, has the following means anda standard deviation:

If X ¯ is the mean sales price of the sample, it will have a mean value of E(X ¯)=210,000.