9.6/4.8= 2
Kelsey can fill 2 bags of Chex mix.
Hope this helps!
Answer:
y = 1/12 (x − 5)²
Step-by-step explanation:
We can solve this graphically without doing calculations.
The y component of the focus is y = 3. Since this is above the directrix, we know this is an upward facing parabola, so it must have a positive coefficient. That narrows the possible answers to A and C.
The x component of the focus is x = 5. Since this is above the vertex, we know the x component of the vertex is also x = 5.
So the answer is A. y = 1/12 (x−5)².
But let's say this wasn't a multiple choice question and we needed to do calculations. The equation of a parabola is:
y = 1/(4p) (x − h)² + k
where (h, k) is the vertex and p is the distance from the vertex to the focus.
The vertex is halfway between the focus and the directrix. So p is half the difference of the y components:
p = (3 − (-3)) / 2
p = 3
k, the y component of the vertex, is the average:
k = (3 + (-3)) / 2
k = 0
And h, the x component of the vertex, is the same as the focus:
h = 5
So:
y = 1/(4×3) (x − 5)² + 0
y = 1/12 (x − 5)²
Let
denote the value on the
-th drawn ball. We want to find the expectation of
, which by linearity of expectation is
![E[S]=E\left[\displaystyle\sum_{i=1}^5B_i\right]=\sum_{i=1}^5E[B_i]](https://tex.z-dn.net/?f=E%5BS%5D%3DE%5Cleft%5B%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5E5B_i%5Cright%5D%3D%5Csum_%7Bi%3D1%7D%5E5E%5BB_i%5D)
(which is true regardless of whether the
are independent!)
At any point, the value on any drawn ball is uniformly distributed between the integers from 1 to 10, so that each value has a 1/10 probability of getting drawn, i.e.

and so
![E[X_i]=\displaystyle\sum_{i=1}^{10}x\,P(X_i=x)=\frac1{10}\frac{10(10+1)}2=5.5](https://tex.z-dn.net/?f=E%5BX_i%5D%3D%5Cdisplaystyle%5Csum_%7Bi%3D1%7D%5E%7B10%7Dx%5C%2CP%28X_i%3Dx%29%3D%5Cfrac1%7B10%7D%5Cfrac%7B10%2810%2B1%29%7D2%3D5.5)
Then the expected value of the total is
![E[S]=5(5.5)=\boxed{27.5}](https://tex.z-dn.net/?f=E%5BS%5D%3D5%285.5%29%3D%5Cboxed%7B27.5%7D)
Answer:
Multiply the divisor by a power of 10 to make it a whole number.
Multiply the dividend by the same power of 10. Place the decimal point in the quotient.
Divide the dividend by the whole-number divisor to find the quotient.
Answer:
-4
Step-by-step explanation:
negative plus a negative means add
You add the number then keep the negative sign