The correct answers are:
- Methylation of histone tails in chromatin can promote condensation of the chromatin.
- DNA is not transcribed when chromatin is packaged tightly in a condensed form.
- Acetylation of histone tails is a reversible process.
- Some forms of chromatin modification can be passed on to future generations of cells.
- Acetylation of histone tails in chromatin allows access to DNA for transcription.
Histone modifications are post-translational modifications of histone protein that can affect gene expression by altering chromatin structure or recruiting histone modifiers.The most common modifications are methylation, phosphorylation, acetylation and ubiquitylation. All of them affect the binding affinity between histones and DNA and thus loosening (gene activation) or tightening (gene repression) the condensed DNA.
Histone methylation is a transfer of methyl group by histone methyltransferases to lysine or arginine amino acid of protein. Effect of methylation depends on the type of protein that is modified. Demethylation is the reverse process.
Histone acetylation is the process of adding of an acetyl group(by histone acetyltransferases) to histone proteins and it can also activate or inhibit the gene expression. Deacetilation is reverse process.
<span>The pH of the matrix increases and the pH of the inter membrane cell decreases
</span>
The reason behind this is the presence of the electron transport chain within the mitochondria which requires the transport of hydrogen ions. The movement of hydrogen ions results in varying pH. If the mitochondria dies, the hydrogen ions will not move into the matrix, causing its pH to increase, and they will build up in the inter membrane causing a decrease in pH.
Answer:
All of them
Explanation:
The effect may not be real because we don't know if the results are reproducible: Peers can identify flaws in the experimental design because an experiment must have a clear design in order to be reproducible by other researchers or else they would not have scientific validity.
The treatment kills cancer cells, but it might simply be a poison that kills all cells—even normal cells: It is possible that in the design of the experiment carried out only cancer cells were used but it had not been performed in healthy cells, which would imply the possibility that the fungus kills all the cells.
Cell samples were taken from too few patients: This may be another mistake because when only a small sample is analyzed it is not certain if the fungi are the ones that kill the cancer cells or are other conditions of the analyzed patient.
Atoms, molecules, cell membranes, then cell (in order from smallest to biggest).