Answer:
0333
Step-by-step explanation:
00
000
0000
1112222
______
11122222 ans
Answer:
A function f(x) is said to be periodic, if there exists a positive real number T such that f(x+T) = f(x).
You can also just say: A periodic function is one that repeats itself in regular intervals.
Step-by-step explanation:
The smallest value of T is called the period of the function.
Note: If the value of T is independent of x then f(x) is periodic, and if T is dependent, then f(x) is non-periodic.
For example, here's the graph of sin x. [REFER TO PICTURE BELOW]
Sin x is a periodic function with period 2π because sin(x+2π)=sinx
Other examples of periodic functions are all trigonometric ratios, fractional x (Denoted by {x} which has period 1) and others.
In order to determine the period of the determined graph however, just know that the period of the sine curve is the length of one cycle of the curve. The natural period of the sine curve is 2π. So, a coefficient of b=1 is equivalent to a period of 2π. To get the period of the sine curve for any coefficient b, just divide 2π by the coefficient b to get the new period of the curve.
Hopefully this helped a bit.
The answer is 28 sq. Units
Answer: The discount is $30, making the sale price $270.
Step-by-step explanation: Take your initial value times the percent of your discount to find the discount amount: in this case, it is 300 * .10 = 30. Then you can subtract that value from your initial value, 300-30=270 to get the sale price.
Answer:
Step-by-step explanation:
(a) You use the fact that the lengths RS and ST total the length RT.
RS +ST = RT
(6y+3) +(3y+5) = 80 . . . . . substitute the given values
9y +8 = 80 . . . . . . . . . . . . .simplify
9y = 72 . . . . . . . . . . . . . . . .subtract 8
72/9 = y = 8 . . . . . . . . . . . .divide by the coefficient of y
___
(b) Now, the value of y can be substituted into the expressions for RS and ST to find their lengths.
RS = 6y +3 = 6·8 +3
RS = 51
ST = 3y +5 = 3·8 +5
ST = 29
___
<em>Check</em>
RS +ST = 51 +29 = 80 = RT . . . . the numbers check OK