1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vitfil [10]
4 years ago
13

Un triángulo escaleno siempre es obtusángulo.

Mathematics
1 answer:
marishachu [46]4 years ago
3 0

Answer:

si

Step-by-step explanation:

lo aprendi el ano pasado si esta incorrecto me disculpo

You might be interested in
HELP LOOK AT THE PIC ( Write the number of the vertices) I FORGOT THIS SINCE YEARS AGO
Kisachek [45]

Answer:

3 vertices

Step-by-step explanation:

Vertices are the "points" of a 2D figure. In this case, we see the 2D figure as a triangle. There are 3 points on the triangle, so there are 3 vertices.

3 0
2 years ago
Solve the following differential equation using using characteristic equation using Laplace Transform i. ii y" +y sin 2t, y(0) 2
kifflom [539]

Answer:

The solution of the differential equation is y(t)= - \frac{1}{3} Sin(2t)+2 Cos(t)+\frac{5}{3} Sin(t)

Step-by-step explanation:

The differential equation is given by: y" + y = Sin(2t)

<u>i) Using characteristic equation:</u>

The characteristic equation method assumes that y(t)=e^{rt}, where "r" is a constant.

We find the solution of the homogeneus differential equation:

y" + y = 0

y'=re^{rt}

y"=r^{2}e^{rt}

r^{2}e^{rt}+e^{rt}=0

(r^{2}+1)e^{rt}=0

As e^{rt} could never be zero, the term (r²+1) must be zero:

(r²+1)=0

r=±i

The solution of the homogeneus differential equation is:

y(t)_{h}=c_{1}e^{it}+c_{2}e^{-it}

Using Euler's formula:

y(t)_{h}=c_{1}[Sin(t)+iCos(t)]+c_{2}[Sin(t)-iCos(t)]

y(t)_{h}=(c_{1}+c_{2})Sin(t)+(c_{1}-c_{2})iCos(t)

y(t)_{h}=C_{1}Sin(t)+C_{2}Cos(t)

The particular solution of the differential equation is given by:

y(t)_{p}=ASin(2t)+BCos(2t)

y'(t)_{p}=2ACos(2t)-2BSin(2t)

y''(t)_{p}=-4ASin(2t)-4BCos(2t)

So we use these derivatives in the differential equation:

-4ASin(2t)-4BCos(2t)+ASin(2t)+BCos(2t)=Sin(2t)

-3ASin(2t)-3BCos(2t)=Sin(2t)

As there is not a term for Cos(2t), B is equal to 0.

So the value A=-1/3

The solution is the sum of the particular function and the homogeneous function:

y(t)= - \frac{1}{3} Sin(2t) + C_{1} Sin(t) + C_{2} Cos(t)

Using the initial conditions we can check that C1=5/3 and C2=2

<u>ii) Using Laplace Transform:</u>

To solve the differential equation we use the Laplace transformation in both members:

ℒ[y" + y]=ℒ[Sin(2t)]

ℒ[y"]+ℒ[y]=ℒ[Sin(2t)]  

By using the Table of Laplace Transform we get:

ℒ[y"]=s²·ℒ[y]-s·y(0)-y'(0)=s²·Y(s) -2s-1

ℒ[y]=Y(s)

ℒ[Sin(2t)]=\frac{2}{(s^{2}+4)}

We replace the previous data in the equation:

s²·Y(s) -2s-1+Y(s) =\frac{2}{(s^{2}+4)}

(s²+1)·Y(s)-2s-1=\frac{2}{(s^{2}+4)}

(s²+1)·Y(s)=\frac{2}{(s^{2}+4)}+2s+1=\frac{2+2s(s^{2}+4)+s^{2}+4}{(s^{2}+4)}

Y(s)=\frac{2+2s(s^{2}+4)+s^{2}+4}{(s^{2}+4)(s^{2}+1)}

Y(s)=\frac{2s^{3}+s^{2}+8s+6}{(s^{2}+4)(s^{2}+1)}

Using partial franction method:

\frac{2s^{3}+s^{2}+8s+6}{(s^{2}+4)(s^{2}+1)}=\frac{As+B}{s^{2}+4} +\frac{Cs+D}{s^{2}+1}

2s^{3}+s^{2}+8s+6=(As+B)(s²+1)+(Cs+D)(s²+4)

2s^{3}+s^{2}+8s+6=s³(A+C)+s²(B+D)+s(A+4C)+(B+4D)

We solve the equation system:

A+C=2

B+D=1

A+4C=8

B+4D=6

The solutions are:

A=0 ; B= -2/3 ; C=2 ; D=5/3

So,

Y(s)=\frac{-\frac{2}{3} }{s^{2}+4} +\frac{2s+\frac{5}{3} }{s^{2}+1}

Y(s)=-\frac{1}{3} \frac{2}{s^{2}+4} +2\frac{s }{s^{2}+1}+\frac{5}{3}\frac{1}{s^{2}+1}

By using the inverse of the Laplace transform:

ℒ⁻¹[Y(s)]=ℒ⁻¹[-\frac{1}{3} \frac{2}{s^{2}+4}]-ℒ⁻¹[2\frac{s }{s^{2}+1}]+ℒ⁻¹[\frac{5}{3}\frac{1}{s^{2}+1}]

y(t)= - \frac{1}{3} Sin(2t)+2 Cos(t)+\frac{5}{3} Sin(t)

3 0
4 years ago
Una empresa fabrica dos productos, X y Y. Cada cantidad del articulo X producida requiere dos horas de trabajo en una taladrador
Zarrin [17]

Answer:

la respuesta esta abajo

Step-by-step explanation:

a) Sea x el número del artículo x mientras que y representa el número del artículo y.

Dado que cada cantidad de artículo x requiere 2 horas de trabajo de perforación, mientras que cada cantidad de artículo y requiere 5 horas de trabajo de perforación. Hay un máximo de 40 horas disponibles, por tanto el modelo se da como:

2x + 5y ≤ 40

b) La trama se trazó utilizando la herramienta gráfica en línea de geogebra.

c) Para 10 unidades de X y 5 unidades de y:

2 (10) + 5 (5) = 45> 40

Por lo tanto, esto no sería posible porque requerirá 45 horas de perforación, lo que es más que el máximo de 40 horas disponibles.

8 0
3 years ago
12<br> x<br> −<br> 15<br> =<br> 6<br> −<br> 3<br> x
11Alexandr11 [23.1K]

Answer:

x= 7/5 (1 2/5 or 1.4)

Step-by-step explanation:

Move the variable to the left-hand side and change its sign.

12x-15+3x=6

Move the constant to the right-hand side and change its sign.

12x+3x=6+15

Collect like terms.

15x=21

Divide both sides of the equation by 15.

x=7/5 (1 2/5 or 1.4)

5 0
3 years ago
Help- plato ) <br>The second- degree term of the expression x^ + 12 X
KatRina [158]

Answer:

Correct Answer is 1 Only 5 x 2 5x2 is the second-degree term. Hence, the correct option is (1)

note :

hope i helped

3 0
3 years ago
Other questions:
  • Write the expression (4X -2)•6(2X +7)in the standard form of a quadratic expression
    15·1 answer
  • What is 3 to the power of three halves equal to?
    5·2 answers
  • Find two numbers if their ratio is 9:11 and their difference is 6.
    14·2 answers
  • Suppose that $1,000 is deposited into an account that yields
    9·1 answer
  • The line has the same slope as 7x-y=5 and the same y intercept as the graph 3y-11x=15
    10·2 answers
  • (3 + 4i) - (8 -5i) Write answer in standard form a +bi Group of answer choices
    12·1 answer
  • Fill in the blanks with the correct symbol to make each statement true. Use +,-, x, divide or parentheses to obtain the given so
    6·1 answer
  • I need help! PLSS THANK YOUU SMM
    11·2 answers
  • The equation g(t)=2+23.7t−4.9t2 models the height, in meters, of a pumpkin t seconds after it has been launched from a catapult.
    8·1 answer
  • G LEARNER'S PACKET (LeaP) KSS TV. LEARNING PHASES AND LEARNING ACTIVITIES VI. REFLECTION (Time Frame: Day 4 ) The learner commun
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!