Answer:
Given the balanced equation
CH4 (g) + 2O2 (g) → CO2 (g) + 2H2O (g)
we know that we'll get one mole CO2 for every 1 mole CH4. So let's calculate how many moles are in 50 g of CH4 by dividing it's mass by it's molar mass (16 g/mole). I get 3.125 moles. The equation says we should get the same number of moles of CO2, so set moles CO2 = 3.125 moles. Then we can find the mass of CO2 by multipying by the molar mass of CO2 (44 g/mole). We should expect 138 grams of CO2.
Explanation:
Answer:

Explanation:
Hello,
At first, we compute liquid-phase molar fractions:

Now, by means of the fugacity concept, for hexane, for instance, we have:

In this manner, at 25 °C the vapor pressure of hexane and heptane are 0.198946 atm and 0.013912 atm repectively, thus, the total pressure is:

Finally, from the hexane's fugacity equation, we find its mole fraction in the vapour as:

Best regards.
Answer:
its letter d ..................................
What scenario? I don't see a picture that helps me help you.