1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crank
3 years ago
15

Two linear hydrocarbons, Hexane (C6H14) and Heptane (C7H16), form pretty much an ideal solution at any composition. A solution i

s made at 25°C that contains 463.96 g of Hexane in 667.71 g Heptane: Characterise the vapour above this solution, and answer, What is the mole fraction of Hexane in the vapour?
Chemistry
2 answers:
Thepotemich [5.8K]3 years ago
5 0

Answer:

y = 0.92

Explanation:

According to this problem, we have an ideal solution of hexane and heptane. This solution was made at 25 °C. If this is an ideal solution, this means that the solution has a vapour above it, so the first thing we need to know is the pressure of hexane and heptane at 25 °C. These pressures are reported and tabuled in differents literatures and handbook.

P₁ (Hexane) = 0.1989 atm

P₂ (Heptane) = 0.0139 atm

Now, to calcule the mole fraction of hexane in the vapour of this solution we need to apply the fugacity concept to the hexane, which is the following expression:

fv hex = fl hex (1)

This means that the fugacity of hexane in vapour would be the same in the liquid state. This concept can then be relationed to the mole fraction. in the liquid phase we have:

fl hex = x * P₁

and in the vapour, the mole fraction is relationed to the total pressure of the solution so:

fv hex = y * Pt

Where "y" would be the mole fraction of hexane in the vapour.

Using these two expression into (1) we have:

y * Pt = x₁ * P₁   (2)

And then, we can solve for y:

y = x * P₁/Pt  (3)

So, all we have to do now is calculate the total pressure, and the mole fraction of hexane.

To get the mole fraction we need the moles of each reactant:

n₁ = 463.96 / 86 = 5.395 moles of hexane

n₂ = 667.71 / 100 = 6.677 moles of heptane

The mole fraction is:

x₁ = n₁ / n₁ + n₂

x₁ = 5.395 / (5.395+6.677) = 0.447

x₂ = 1 - 0.447 = 0.553

We have the mole fraction of hexane, let's calculate the total pressure:

Pt = x₁P₁ + x₂P₂

Pt = (0.447 * 0.1989) + (0.553 * 0.0.0139) = 0.0966 atm

Finally, let's use expression (3) to get the mole fraction in the vapour:

y = 0.447 * 0.1989/0.0966

y = 0.92

Anettt [7]3 years ago
3 0

Answer:

y_{C_6H_{14}}=0.92

Explanation:

Hello,

At first, we compute liquid-phase molar fractions:

n_{C_6H_{14}}=463.96 g*\frac{1mol}{86g} =5.3949molC_6H_{14}\\n_{C_7H_{16}}=667.71 g*\frac{1mol}{100g} =6.6771molC_7H_{16}\\x_{C_6H_{14}}=\frac{5.3949}{5.3949+6.6771} =0.447\\x_{C_7H_{16}}=1-x_{C_6H_{14}}=0.553

Now, by means of the fugacity concept, for hexane, for instance, we have:

f_{C_6H_{14}}^V=f_{C_6H_{14}}^L\\y_{C_6H_{14}}p_T=x_{C_6H_{14}}p_{C_6H_{14}}

In this manner, at 25 °C the vapor pressure of hexane and heptane are 0.198946 atm and 0.013912 atm repectively, thus, the total pressure is:

p_T=x_{C_6H_{14}}p_{C_6H_{14}}+x_{C_7H_{16}}p_{C_7H_{16}}\\p_T=0.447*0.198946 atm +0.553*0.013912 atm=0.096622atm

Finally, from the hexane's fugacity equation, we find its mole fraction in the vapour as:

y_{C_6H_{14}}=\frac{x_{C_6H_{14}}p_{C_6H_{14}}}{p_T}=\frac{0.447*0.198946 atm}{0.096622atm} \\y_{C_6H_{14}}=0.92

Best regards.

You might be interested in
Chemical equations
Alenkasestr [34]

I believe it is B writing chemical formulas

7 0
3 years ago
Read 2 more answers
A 150.0 mL solution of 2.888 M strontium nitrate is mixed with 200.0 mL of a 3.076 M sodium fluoride solution. Calculate the mas
Lelechka [254]

Answer:

Mass SrF2 produced = 38.63 g SrF2 produced

[Na^+]:  = 1.758 M

[NO3^-]:  = 1.238 M

[Sr^2+] = 0.3589 M

[F^-] = 2.36*10^-5 M

Explanation:

Step 1: Data given

Volume of 2.888M strontium nitrate = 150.0 mL = 0.150 L

Volume of 3.076 M sodium fluoride = 200.0 mL = 0.200 L

Step 2 : The balanced equation

Sr(NO3)2(aq) + 2NaF(aq) → SrF2(s) + 2NaNO3(aq) → Sr2+ + 2F- + 2

Step 3: Calculate moles strontium nitrate

Moles Sr(NO3)2 = Molarity * volume  

Moles Sr(NO3)2 = 2.888 M * 0.150 L

Moles Sr(NO3)2 = 0.4332 moles

Step 4: Calculate moles NaF

Moles NaF = 3.076 M * 0.200 L

Moles NaF = 0.6152 moles

It takes 2 moles F^- to precipitate 1 mole Sr^2+, so F^- is limiting.

Step 5: Calculate limiting reactant

For 1 mol of Sr(NO3)2 we need 2 moles of NaF to produce 1 mol of SrF2 and 2 moles of NaNO3

NaF is the limiting reactant. It will completely be consumed (0.6152 moles).

Sr(NO3)2 is in excess. There will react 0.6152/2 = 0.3076 moles

Moles Sr^2+ precipitated by F^- = 0.3076

There will remain 0.4332 - 0.3076 = 0.1256 moles of Sr(NO3)2

Moles Sr^2+ no precipitated (left over) = 0.1256 moles

Step 6: Calculate moles SrF2  

For 1 mol of Sr(NO3)2 we need 2 moles of NaF to produce 1 mol of SrF2 and 2 moles of NaNO3

For 0.6152 moles NaF we have 0.6152/2 = 0.3076 moles of SrF2

Mass SrF2 produced:  0.3076 mol * 125.6 g/mol = 38.63 g SrF2 produced

Step 7: Calculate concentration of [Na+] and [NO3-]

Since both Na^+ and NO3^- are spectator ions, and the final volume is 150 ml + 200 ml = 350 ml (0.350 L), the concentrations of Na^+ and NO3^- can be calculated as follows:

[Na^+]:  (200 ml)(3.076 M) = (350 ml)(x M) and x = 1.758 M

[NO3^-]:  (150 ml)(2.888 M)(2) = (350 ml)(x M) = 1.238 M

Step 8: Calculate [Sr^2+] and [F^-]

[Sr^2+] = 0.1256 moles/0.350 L = 0.3589 M

To find [F^-], one needs the Ksp for SrF2.  There are several values listed in the literature. I am using a value of 2x10^-10.

SrF2(s) <==> Sr^2+(aq) + 2F^-(aq)

Ksp = [Sr^2+][F^-]²

2x10^-10 = (0.3589)(x)²

x² = 5.57*10^-10

x = [F^-] = 2.36*10^-5 M

4 0
3 years ago
Using the graph below please draw a reaction potential energy diagram for a reaction with the
azamat

Answer:

12

Explanation:

because it is the sam

7 0
3 years ago
A student puts 0.020 mol of methyl methanoate into an empty and rigid 1.0 L vessel at 450 K. The pressure is measured to be 0.74
stellarik [79]

Explanation:

Starting moles of ethanol acid = 0.020 mol

At the equilibrium 50 % of the ethanol acid molecules reacted

∴ Moles of ethanol acid reacted = 0.020 mol * 50 %/100 %

                                                                   = 0.010 mol

Moles of ethanol acid remain = 0.020 mol + 0.010 mol = 0.010 mol

Moles of the product (CH3COOH)^{2} gas formed are calculated as

0.010 mol CH3COOH * 1 mol (CH3COOH)^{2} / 2 mol CH3COOH

= 0.005 mol (CH3COOH)^{2}

Therefore at the equilibrium total moles of gas present in the vessel are 0.010 mol CH3COOH and 0.005 mol (CH3COOH)^{2}

That is total gas moles at equilibrium = 0.010 mol + 0.005 mol = 0.015 mol

Now Calculate the pressure  :

0.020 mol gas has pressure of 0.74 atm therefore at the same condition what will be the pressure exerted by 0.015 mol gas

P1/n1 = P2/n2

P2 = P1*n2 / n1

      = 0.74 atm * 0.015 mol / 0.020 mol

     = 0.555 atm

4 0
3 years ago
HURRY FAST!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
miss Akunina [59]
B. The sand increases friction by increasing roughness.
8 0
3 years ago
Read 2 more answers
Other questions:
  • Which scenario describes a transfer of mechanical energy to heat and sound energy? Question 7 options: A) a very high pitched so
    6·1 answer
  • I NEED HELPP<br> Describe how carbon and oxygen form carbon dioxide.
    12·2 answers
  • HELP PLZ :(((((((
    7·2 answers
  • The total mechanical energy of a simple harmonic oscillation system is
    10·1 answer
  • Ammonium perchlorate is the solid rocket fuel used by the U.S. Space Shuttle. It reacts with itself to produce nitrogen gas , ch
    8·1 answer
  • At constant temperature and pressure, 2.05 g of oxygen gas O2 is added to a 1.0 L balloon containing 1.00 g of O2. What is the n
    8·1 answer
  • I don't understand this part? Plz help =)
    8·1 answer
  • Name one material needed for<br> photosynthesis?
    13·2 answers
  • How are air resistance and friction similar?
    8·2 answers
  • Divide rs 120 I three parts which are in THE ratio of 1:2:3.​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!