For the first one, the fraction version for 0.25 is 1/4 and the percentage is 25%
The probability that the sample proportion will be less than 0.04 is <u>0.0188 or 1.88%</u>.
The true proportion given to us (p) = 0.07.
The sample size is given to us (n) = 313.
The standard deviation can be calculated as (s) = √[{p(1 - p)}/n] = √[{0.07(1 - 0.07)}/313] = √{0.07*0.93/313} = √0.000207987 = 0.0144217.
The mean (μ) = p = 0.07.
Since np = 12.52 and n(1 - p) = 291.09 are both greater than 5, the sample is normally distributed.
We are asked the probability that the sample proportion will be less than 0.04.
Using normal distribution, this can be shown as:
P(X < 0.04),
= P(Z < {(0.04-0.07)/0.0144217}) {Using the formula Z = (x - μ)/s},
= P(Z < -2.0802)
= 0.0188 or 1.88% {From table}.
Thus, the probability that the sample proportion will be less than 0.04 is <u>0.0188 or 1.88%</u>.
Learn more about the probability of sampling distributions at
brainly.com/question/15520013
#SPJ4
Answer:
10
Step-by-step explanation:

so basically what you would have to do is set up your numbers. it would look something like this. 68
× 49
-------------
and would then multiply 9 by 8, 9 by 6. put it down below the line while making sure to carry the numbers if need be. then do the same with the 4 times 8, and 4 by 6.
Download connects Q&A they have the answers on there