Answer
Given,
Period of the Pendulum, T= 1 s
acceleration due to gravity, g = 9.8 m/s²
Length of Bob = 0.2482 m
Loss of time in the clock = 1.5 minutes/ day
Loss of time in 1 oscillation
= ![\dfrac{1.5\times 60}{24\times 60\times 60}](https://tex.z-dn.net/?f=%20%5Cdfrac%7B1.5%5Ctimes%2060%7D%7B24%5Ctimes%2060%5Ctimes%2060%7D)
= 0.001042
Hence, time period, T = 1 + 0.001042
T = 1.001042 s
a) Using Time period of oscillation formula
![T = 2\pi \sqrt{\dfrac{L}{g}}](https://tex.z-dn.net/?f=T%20%3D%202%5Cpi%20%5Csqrt%7B%5Cdfrac%7BL%7D%7Bg%7D%7D)
![1.001402 = 2\pi \sqrt{\dfrac{0.2482}{g'}}](https://tex.z-dn.net/?f=1.001402%20%3D%202%5Cpi%20%5Csqrt%7B%5Cdfrac%7B0.2482%7D%7Bg%27%7D%7D)
![g' = 9.77\ m/s^2](https://tex.z-dn.net/?f=%20g%27%20%3D%209.77%5C%20m%2Fs%5E2)
Free fall acceleration at the clock location = 9.77 m/s²
b) Length of pendulum bob to keep it perfect time
![1 = 2\pi \sqrt{\dfrac{L}{g}}](https://tex.z-dn.net/?f=1%20%3D%202%5Cpi%20%5Csqrt%7B%5Cdfrac%7BL%7D%7Bg%7D%7D)
![1 = 2\pi \sqrt{\dfrac{L'}{9.77}}](https://tex.z-dn.net/?f=1%20%3D%202%5Cpi%20%5Csqrt%7B%5Cdfrac%7BL%27%7D%7B9.77%7D%7D)
![L' = 0.2475\ m](https://tex.z-dn.net/?f=L%27%20%3D%200.2475%5C%20m)
Hence, Length of pendulum bob is equal to 0.2475 m.