9514 1404 393
Answer:
179/495
Step-by-step explanation:
When the repeating decimal starts at the decimal point, the repeating digits can be turned into a fraction by putting them over the same number of 9s. That is, 0.61616161... is equivalent to 61/99.
Here, the repeating part is 1/10 that value, so is 61/990. This is added to the non-repeating part, which is 0.3 = 3/10.
Then the entire decimal is ...
0.361_61 = 3/10 + 61/990 = (297 +61)/990 = 358/990 = 179/495
The unit price of the can of peanuts is $0.9 per can
Answer:
(1) D.Angle C is congruent to to Angle F. (2) C. SSS. (3) C. cannot be congruent to.
Step-by-step explanation:
1)
From the given figure it is noticed that


According to SAS postulate, if two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then both triangles are congruent.
The included angles of congruent sides are angle C and angle G.
So, condition "Angle C is congruent to to Angle F" will prove that the ∆ABC and ∆EFG are congruent by the SAS criterion.
2)
If 
According to SSS postulate, if all three sides in one triangle are congruent to the corresponding sides in the other.
Since two corresponding sides are congruent but third sides of triangles are not congruent, therefore SSS criterion for congruence is violated.
3)
Since two corresponding sides are congruent but third sides of triangles are not congruent, therefore the included angle of congruent sides are different.

Therefore angle C and angle F cannot be congruent to each other.
The "dot product" of two vectors has several different formulas.
Since you are given the x- and y-coordinates of both vectors a and b, we can apply the formula
a dot b = ax*bx + ay*by, where ax=x-component of vector a, by=y comp of vector b, and so on.
So, for the problem at hand, ax * bx + ay * by becomes
3(-2) + (-8)(-6) = -6 + 48 = 42 (answer). Note that the dot product (or "scalar product" is itself a scalar.
Answer:
mmm, well, not much we can do per se, you'd need to use a calculator.
I'd like to point out you'd need a calculator that has regression features, namely something like a TI83 or TI83+ or higher.
That said, you can find online calculators with "quadratic regression" features, which is what this, all you do is enter the value pairs in it, to get the equation.
Step-by-step explanation: