Answer:
Assuming you mean a rectangular prism, cube, or triangular prism,the volume would be 384.
Step-by-step explanation:
Well volume for those two shapes could be b*h
SO base times height is always gonna give you volume for most shapes
------------------------------------------
Define adult and student tickets
------------------------------------------
Let the number of adult tickets be x
Adult tickets = x
Student tickets = x + 69
------------------------------------------
Form equation and solve for x
------------------------------------------
x + x + 69 = 569
2x + 69 = 569 ← Combine like terms
2x = 569 - 69 ← Subtract 69 from both sides
2x = 500
x = 250 ← Divide by 2 to find x
------------------------------------------------------------------------------------
Find the number of adult tickets and student tickets
------------------------------------------------------------------------------------
Adult tickets = x = 250
Student tickets = x + 69 = 319
------------------------------------------------------------------------------------
Answer: Adult tickets = 250 ; Student tickets = 319
------------------------------------------------------------------------------------
Answer:

<u>Circumference</u><u> </u><u>of </u><u>a </u><u>circle </u><u>is </u><u>given </u><u>by </u>
<u>
</u>
- Given - <u>Diameter</u><u> </u><u>of </u><u>circle </u><u>=</u><u> </u><u>1</u><u>0</u><u> </u><u>yards</u>

now ,
<u>substituting</u><u> </u><u>the </u><u>value </u><u>of </u><u>r </u><u>in </u><u>the </u><u>formula </u><u>of </u><u>circumference</u><u> </u><u>~</u>

hope helpful :D
Answer:
<h2><em>
$960,000</em></h2>
Step-by-step explanation:
The gross profit rate of the company is expressed as
where C is the cost of goods sold and S is the net sales. If the net sales S = $1,200,000, and gross profit ratio is 0.20, the cost of goods sold will be expressed as shown;
Making C the subject of the formula from the expression given.

Substituting P = 0.20 and S = $1,200,000 into the resulting equation, we will have;

<em>Hence the cost of goods sold is $960,000</em>
<em></em>