The question is incomplete. Here is the complete question.
Find the measurements (the lenght L and the width W) of an inscribed rectangle under the line y = -
x + 3 with the 1st quadrant of the x & y coordinate system such that the area is maximum. Also, find that maximum area. To get full credit, you must draw the picture of the problem and label the length and the width in terms of x and y.
Answer: L = 1; W = 9/4; A = 2.25;
Step-by-step explanation: The rectangle is under a straight line. Area of a rectangle is given by A = L*W. To determine the maximum area:
A = x.y
A = x(-
)
A = -
To maximize, we have to differentiate the equation:
=
(-
)
= -3x + 3
The critical point is:
= 0
-3x + 3 = 0
x = 1
Substituing:
y = -
x + 3
y = -
.1 + 3
y = 9/4
So, the measurements are x = L = 1 and y = W = 9/4
The maximum area is:
A = 1 . 9/4
A = 9/4
A = 2.25
I think they all will make it a function.
I’m questioning whether or not the Gacha life thing matters or not.
Considering that each student has only one birthday, each input will be related to only one output, hence this relation is a function.
<h3>When does a relation represent a function?</h3>
A relation represents a function when each value of the input is mapped to only one value of the output.
For this problem, we have that:
- The input is the student's name.
- The output is the student's birthday.
Each student has only one birthday, hence each input will be related to only one output, hence this relation is a function.
More can be learned about relations and functions at brainly.com/question/12463448
#SPJ1