Assuming that both triangles are an exact copy of one another, it is safe to assume that 3y-7 is equal to 41. Set up an equation
3y-7=41
Add 7 to both sides
3y=48
Divide both sides by 3
y=16
Now to find PN.
Based on what we know, we can assume that MP = PN. Let's make some equations!
MP = 17x-8 PN = 11x+4
17x-8 = 11x+4
Subtract 11x from both sides
6x-8 = 4
Add 8 to both sides
6x = 12
Divide by 2
x=2
Substitute 2 in for x in the equation for PN
11(2)+4
Multiply 11 by 2
22+4 = 26
PN = 26
Plug the x value which is 2 back to the x and solve.
I gave you two answers because I wasn’t sure if the question was (x^2) - 2 or x^2-2.
Those two functions look similar but is totally different so keep that in mind.
Hope you have a victorious day!
The mean is 0.0118 approximately. So option C is correct
<h3><u>Solution:</u></h3>
Given that , The probability of winning a certain lottery is
for people who play 908 times
We have to find the mean number of wins

Assume that a procedure yields a binomial distribution with a trial repeated n times.
Use the binomial probability formula to find the probability of x successes given the probability p of success on a single trial.



Hence, the mean is 0.0118 approximately. So option C is correct.
Answer:
Why is 3 an integer?
They are the numbers you usually count and they will continue on into infinity. Whole numbers are all natural numbers including 0 e.g. 0, 1, 2, 3, 4… Integers include all whole numbers and their negative counterpart e.g. … -4, -3, -2, -1, 0,1, 2, 3, 4