The range is the difference between the smallest and highest numbers in a list or set. To find the range, first put all the numbers in order. Then subtract (take away) the lowest number from the highest. The answer gives you the range of the list.
Answer:
No probllem linked
Step-by-step explanation:
so first off, let's simplify both equations, starting off by multiplying both sides by the LCD of all fractions, to do away with the denominators.
![\bf \cfrac{10(x-y)-4(1-x)}{3}=y\implies \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{3}}{10(x-y)-4(1-x)=3y} \\\\\\ 10x-10y-4+4x=3y\implies \boxed{14x-13y=4} \\\\[-0.35em] ~\dotfill\\\\ 7+x-\cfrac{x-3y}{4}=2x-\cfrac{y+5}{3}\implies \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{12}}{12\left( 7+x-\cfrac{x-3y}{4} \right)=12\left( 2x-\cfrac{y+5}{3} \right)} \\\\\\ 84+12x-3(x-3y)=24x-4(y+5) \\\\\\ 84+12x-3x+9y=24x-4y-20\implies \boxed{-15x+13y=-124}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B10%28x-y%29-4%281-x%29%7D%7B3%7D%3Dy%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B3%7D%7D%7B10%28x-y%29-4%281-x%29%3D3y%7D%20%5C%5C%5C%5C%5C%5C%2010x-10y-4%2B4x%3D3y%5Cimplies%20%5Cboxed%7B14x-13y%3D4%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%207%2Bx-%5Ccfrac%7Bx-3y%7D%7B4%7D%3D2x-%5Ccfrac%7By%2B5%7D%7B3%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B12%7D%7D%7B12%5Cleft%28%207%2Bx-%5Ccfrac%7Bx-3y%7D%7B4%7D%20%5Cright%29%3D12%5Cleft%28%202x-%5Ccfrac%7By%2B5%7D%7B3%7D%20%5Cright%29%7D%20%5C%5C%5C%5C%5C%5C%2084%2B12x-3%28x-3y%29%3D24x-4%28y%2B5%29%20%5C%5C%5C%5C%5C%5C%2084%2B12x-3x%2B9y%3D24x-4y-20%5Cimplies%20%5Cboxed%7B-15x%2B13y%3D-124%7D)
now, let's do some elimination on those two simplified equations.
![\bf \begin{array}{cllcl} 14x&-13y&=&4\\ -15x&+13y&=&-124\\\cline{1-4} -x&&=&-120 \end{array}~\hfill x=\cfrac{-120}{-1}\implies \blacktriangleright x=120 \blacktriangleleft \\\\\\ \stackrel{\textit{substituting on the 1st equation}}{14(120)-13y=4}\implies 1680-13y=4\implies 1680-4=13y \\\\\\ 1676=13y\implies \blacktriangleright \cfrac{1676}{13}=y \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \left( 120~,~\frac{1676}{13} \right)~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bcllcl%7D%2014x%26-13y%26%3D%264%5C%5C%20-15x%26%2B13y%26%3D%26-124%5C%5C%5Ccline%7B1-4%7D%20-x%26%26%3D%26-120%20%5Cend%7Barray%7D~%5Chfill%20x%3D%5Ccfrac%7B-120%7D%7B-1%7D%5Cimplies%20%5Cblacktriangleright%20x%3D120%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bsubstituting%20on%20the%201st%20equation%7D%7D%7B14%28120%29-13y%3D4%7D%5Cimplies%201680-13y%3D4%5Cimplies%201680-4%3D13y%20%5C%5C%5C%5C%5C%5C%201676%3D13y%5Cimplies%20%5Cblacktriangleright%20%5Ccfrac%7B1676%7D%7B13%7D%3Dy%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cleft%28%20120~%2C~%5Cfrac%7B1676%7D%7B13%7D%20%5Cright%29~%5Chfill)
Answer:
8
Step-by-step explanation:
the anwser is you use the formal
A+5=6
Subtract 5 from both sides
A+5-5=6-5
A=1
Hope that helps